
Deliverable 4
Formal system engineering

28 juillet 2009 Version 1
February 1, 2010à 2:32 P.M.Version 2

Projet RIMEL

ANR-06-SETI-015
Equipe MOSEL, LORIA, Université Henri Poincaré Nancy 1
ClearSy
LABRI, Université de Bordeaux & CNRS
http://rimel.loria.fr
Années 2007-2008-2009



Avertissement
The following report has been written by Nazim Benaı̈ssa, Thierry
Lecomte, Dominique Méry, Joris Rehm and Neeraj Singh. Each chapter
mentions his authors.

2



Contents

1 Présentation générale 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Patrons de développement prouvé pour les systèmes . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Raffinement automatique avec BART . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Modélisation d’un système . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Systèmes intégrant la sécurité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 BART in action 11
2.1 Introduction to Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Refined Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Refinement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Refinement Rules Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Variables refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Substitutions refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Database organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Application to Wayside Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Added Refinement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Modèle du temps et patrons 27
3.1 Définition et usage des patrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Exemple récurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Encodage des fonctions totales par des variables . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Patron d’agenda absolu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Patron d’agenda relatif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Patron de chronomètres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7.1 Modèle du patron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Insertion du patron raffiné . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.3 Représentation des contraintes temporelles . . . . . . . . . . . . . . . . . . . . . 39
3.7.4 Représentation des propriétés temporelles . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Applying patterns for modelling pacemaker-like systems 43
4.1 Overview of Pacemaker System and Environment . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 The Heart Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 The Pacemaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Event-B Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Action-Reaction Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Time-Based Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Overview of Pacemaker System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Abstract model of Pacemaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



4.4.1 Abstraction of AOO and VOO modes . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Abstraction of AAI and VVI modes . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 Abstraction of AAT and VVT modes . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 First refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Second refinement:Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Third refinement:Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Fourth refinement:Rate Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Model Validation using ProB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Formal Development of Two-Electrode Cardiac Pacing System 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Basic Overview of Pacemaker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 The Heart System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 The Pacemaker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 The modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Modelling actions over states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Model refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Guidelines for EVENT B Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Formal Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 The Context and Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 First refinement:Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Second refinement:Rate Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Model Validation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Adhoc systems 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Overview of the modelling protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Abstract model of basic communication protocol . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 First Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Second Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Third Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . . 121
6.3.4 Fourth Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . 122
6.3.5 Fifth Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . . 124

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 SmartCards 127
7.1 Analysing cryptographic protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Pattern for Modelling the Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 The Pattern Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.2 An Example of the Pattern Application . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Event-B Models of the Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.1 Abstract Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.2 First Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.3 Second refinement: attacker’s knowledge . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Self-healing systems 141

4



List of Figures

1.1 Bart en action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Bart schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Bart refinement process order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Bart testing rule process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A Railroad Line of 5 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Different types of detectors related to a block . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Files generated by Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Status of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Ad-hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Ad-hoc Networks of First refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Ad-hoc Networks of Fifth refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Hierarchy of authentication and key establishment goals . . . . . . . . . . . . . . . . . . 129
7.2 Hierarchy of authentication and key establishment goals . . . . . . . . . . . . . . . . . . 129
7.3 Abstract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5



6



Chapter 1

Présentation générale

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Patrons de développement prouvé pour les systèmes . . . . . . . . . . . . . . . . . . . 8

1.2.1 Raffinement automatique avec BART . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Modélisation d’un système . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Systèmes intégrant la sécurité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7



1.1 Introduction

Le développement incrémental dirigé par la preuve de systèmes informatiques vise à mettre en œuvre la
démarche de correction par construction (correct-by-construction)[81] dans le cadre de systèmes qui sont à
logiciels prépondérants. Cette construction repose sur l’écriture de modèles événementiels dans le lanage
de modélisation EVENT B et la progression de la construction est fondée sur le raffinement qui permet de
préciser de plus en plus ce qui sera un modèle final. cette démarche progressive est validée par la relation de
raffinement mais aussi par la preuve mathématique de conditions de vérification permettant de garantir que
le modèle concret satisfait les mêmes propriétés que le modèle abstrait. La démarche générale consiste donc
à expliciter un modèle abstrait qui répond bien au problème posé et que le concepteur va progressivement
modifier pour le rendre de plus en plus proche de la solution finale visée. Cette solution finale peut être
un algorithme séquentiel, un algorithme réparti ou un système à logiciel prépondérant. Une des idées
développées dans le cadre de ce projet est celle de patron de conception prouvé et cette idée se fonde sur
des observations faites au cours des études de cas réalisées pour construire des modèles de systèmes. Jean-
Raymond Abrial[59] a souligné l’intérêt d’une telle démarche capable de capitaliser des preuves parfois
difficiles mais qui sont réutilisables dans d’autres dévelopements. Une telle approche avait été suivie dans le
cadre du raffinement automatique avec la première version du système BART par notre partenaire industriel
et la société SIEMENS pour le développement d’un système de coàntrôle pour un métro à Paris. Dans un
cadre industriel, l’importance est mise sur la diminution des coût tout en préservant la qualité du produit
développé. Nous avons déjà proposé un certain nombre de développements dans le cadre des livrables
préccédents [18, 19, 20]. Pour ce livrable, il nous est paru important de mettre en évidence les patrons
que l’on pouvait réutiliser effectivement et aussi d’étendre notre champ d’activité aux systèmes à logiciel
prépondérant. La notion de patron est assez répandue mais ne recouvre pas toujours les mêmes idées et le
langage de modélisation EVENT B n’échappe pas à ce constat. Nous avons considéré plusieurs domaines
d’applications et essayer de donner des définitions claires de ce qu’est un patron fondé sur la preuve.

1.2 Patrons de développement prouvé pour les systèmes

1.2.1 Raffinement automatique avec BART

Les études menées dans les tâches ont conduit à des réalisations concrètes avec BART [23] qui est une
redéfinition de cet outil dans le cadre de l’AtelierB 4.0. Cette version de l’AtelierB est différente de la
distribution RODIN mais permet de développer aussi des modèles EVENT B .
L’environnement BART propose d’engendrer des modèles B automatiquement en appliquant des règles
de raffinement. Les modèles engendrés sont vérifiés par l’outil. L’approche suivie par BART est décrite
dans le chapitre 2 et a été utilisée dans des développements industriels. BART est un outil qui permet de
raffinement automatqieument des composants B et ce processus est fondé sur des règles de raffinement
proposés par le développeur. Un langage de règles spécifiques a été défini et BART r(affine au moins
une machine. La figure 1.1 décrit le processus opéré. Dans le cas de BART, l’objectif estd e fournir des
machines d’implantation qui peuvent ensuite conduire à du code C/C++/ADA etc

Figure 1.1: Bart en action

8



1.2.2 Modélisation d’un système
Deux patrons ont été introduits indépendamment et portent sur la modélsation des systèmes réactifs. Il s’agit
d’une part du patron action/réaction de Jean-Raymond Abrial[?] introduit dans le cadre du développement
d’une presse et d’autre part du patron permettant d’ajouter du temps au modèle dû à J. Rehm présenté
dans le chapitre 3. Un patron dans ce contexte est un guide méthodologique fondé sur des éléments de
modélisation à prendre en compte comme le temps ou l’action/réaction. Il s’agit d’un élément important
du système à modéliser et le patron apporte un guide et une aide sur ce qu’il convient d’ajouter au modèle
courant. Ces deux techniques ont été développées séparément mais ont été utilisées dans une modélisation
d’un pacemaker 4. Le système est analysé suivant ses modes de fonctionnement et les deux patrons sont
combinés. Le travail de modélisation a été facilité par l’utilisation de ces patrons de conception prouvés et
cette utilisation a permis de monter que ces patrons étaient réutilisables dans des études de cas différentes
des études ayant conduit à leur énoncé.

1.2.3 Systèmes intégrant la sécurité
Les travaux sur les algorithmes cryptologiques ont permis de mettre en évide,ce un patron de développement
prouvé permettant d’intégrer des élements dans les modèles afin de valider telle ou telle propriété propre
aux algorithmes cryptologiques. Le chapitre 7 apporte une description assez complète de cette technique.

1.3 Conclusion
Ce livrable fait le point sur ce que nous avons appelé le développement de systèmes par la méthode
incrémentale validée par la preuve. Les systèmes considérés dans ce livrable sont le plus souvent liés
à des problèmes algorithmiques de la répartition complexes comme les systèmes intégrant la cryptolo-
gie. Le pacemaker est un autre type de système qui a permis d’illustrer les patrons mis en évidence
par J.-R. Abrial et J. Rehm. Le cas de l’algorithme de Dijkstra est différent puisqu’il s’agit en fait de
l’autostabilisation qui est une propriété très difficile à démontrer. Ce point reste à approfondir car il y a des
éléments méthodologiques à produire à partir de l’exemple développé dont nous avons donné uniquement
les modèles Event B. Concernant le lien avec les outils, nous avons en chantier des applications mettant
en œuvre les patrons. Enfin, un patron permet de partager à d’autres l’expérience que nous avons gagné
lors de nos études de cas; le groupe a longuement échangé sur cette notion et la perçoit comme une aide.
La définition formelle d’un patron reste à développer mais l’idée générale est sans doute plus précise. On
notera que cette définition est liée à des études de cas et que comme pour les objets, il faut développer pour
bin comprendre ce concept. Le groupe poursuit donc vers une définition plus formelle. Les mois à venir
seront employés pour publier ces résultats.

9



10



Chapter 2

BART in action

Ce chapitre a été rédigé par Thierry Lecomte.

Sommaire
2.1 Introduction to Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Refined Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Refinement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Refinement Rules Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Variables refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Substitutions refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Database organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Application to Wayside Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Added Refinement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11



2.1 Introduction to Bart
BART is a tool that can be used to automatically refine B components. This process is rule based so that the
user can drive refinement. Its own rule language has been defined in this purpose. It has been designed to
be a stand-alone tool, but it may be launched from Atelier B user interface. As an input, Bart must be given
at least the machine or refinement to refine. There must be exactly one component to refine.

Figure 2.1: Bart schema

Automatic refinement is a rule based refinement process for B components (abstractions or refinements).
The tool is given a component, and it searches, for each element to refine, some rules that specify how it
must be treated. These rules allow to implement design patterns for B models. Bart is specialized for B
software models but is likely to be extended to support event B models.

2.1.1 Refined Elements

First elements processed by the Bart tool are the abstract variables of the component to refine (content of
the ABSTRACT V ARIABLES clause).

Figure 2.2: Bart refinement process order

The tool must produce, for each one of them, one or more abstract or concrete variables that implement it.
Bart processes operations of given component in order to refine them. It must produce, for each operation,
a substitution body concrete enough to be put in the component implementation. Refined operations are
considered for the whole component abstraction. It means that Bart refines the most concrete version of
each operation.
Bart also refines content of initialisation clause of given component. Typically, it produces a concrete result
by specifying initialisation substitutions for concrete variables refining content of ABSTRACT V ARIABLES
clause.
Abstract variables are refined first, as other parts of the process need its output to find suitable rules for
operations and initialisation. It is necessary at these steps to know how variables have been refined. This
variable information is stored as predicates in Bart hypothesis stack.
As it will be described later, refinement process uses rules to determine how each element is refined. A same
rule can apply for several elements, so it must be general. In this purpose, the rule language uses jokers, so
that rules can contain variable parts.

12



2.1.2 Refinement Rules
Bart uses rules for refining variables, operations and substitutions. These rules belong to different types:

• variables rules, or

• substitution rules, which can be used for both operations and initialisation.

Rules of same type are gathered in theories (ako packages). Theories are associated to predicates/expres-
sions families, as referred in the tactics theory. Rules usually contain a pattern, and may contain a constraint.
These two elements are used to know if a rule can be applied to refine a certain element. Rules also contain
clauses that express the refinement result.
Rules may have constraints, expressed in their WHEN clause. A constraint is a predicate, which may
contain jokers. It may be a complex predicate, built with ”&” and ”OR” operators. Bart contains a stack
of hypothesis , which is built from the machine to refine and its environment. A constraint is successfully
checked if its elementary elements (element not containing ”&” or ”OR”) can be pattern-matched with a
predicate of the stack so that the complex constraint is true.

Figure 2.3: Bart testing rule process

According to operators, Bart uses backtracking to try every combination of instantiation that should be a
success. If several instantiations can make the constraint be successfully checked, Bart uses one of them. In
this case, it is better to write a more detailed constraint to have only one result. If there are several results,
Bart could choose one which is not the one the user had planned. Usually, when checking a constraint, some
jokers have already been instantiated.
Guards are special predicates which may be present in rule constraint clauses. They allow checking some
properties on elements to refine and their environment.
There are two kinds of guards:

• some are simply present in the predicate stack. They are added at the environment loading. For
instance ABCON (abstract constant) and ABV AR (abstract variable) belong to this kind of guards.

• the other kind is calculated guards. For these ones, during constraint checking, Bart doesn’t try to
match them) with the stack, but directly calculates if the guard is true or false. These kinds of guards
may also have side effects. For example bnum (numeric test) or bident (identifier test) are calculating
guards.

Guards are simply put in the constraint as regular predicates.
This process is used for variables, operations and initialisation refinement, although it is simpler for vari-
ables. Every rule contains a pattern. First Bart tries to match it with the element to refine. If it succeeds,
it tries, if a rule has a constraint clause, to match the predicate against hypothesis. When checking the
constraint, some jokers have already been instantiated by pattern matching. If the constraint checking is a
success or the rule had no constraint, then it will be used to refine current element.

13



Variable process is simpler as variable rules have simple pattern, which is a single joker. Variable rule
patterns are only matched in order to instantiate the joker representing currently refined abstract variable.
This joker is reused in WHEN or result clauses.

2.2 Refinement Rules Database
Rule files are files containing theories, each theory containing one or several rules used to refine given
component. Rule file extension is usually .rmf. A rule file can contain variable, operation, structure and
initialisation theories. It can also contain utility theories such as tactic, user pass, or definition of predicates
synonyms.
The rule file syntax must also respect certain constraints:

• User pass can be present at most once

• Tactic can be present at most once

• Predicate theory can be present at most once

Order between theories has no syntactical impact, expect for predicates theory: it must be defined before
its elements are used in the rule. Order between theories has an impact on the rule research, as the standard
process (no user pass or tactic) reads theories from bottom to top. User pass and tactic can be defined
anywhere in the file, even before theories they refer to have been defined.
The Bart tool comes with a set of predefined rule base, contained in the file PatchRaffiner.rmf present in
Bart distribution. It provides rules that permit to refine most of the classical B substitutions.
The classical automatic refinement scheme is the following: most elements of given component can be
refined using the rule base. If an element can not be refined with it, or needs a more specific treatment, user
should write suitable rules in rmf files that will be provided after the rule base on command line, or in the
component associated rule file.

2.2.1 Variables refinement
Variable rule research is different from rule research for operations and initialisation. Instead of processing
each variable and finding a suitable rule for it, it processes each rule of considered theories (all variable
theories or a subset if tactic or user pass is used) and checks if it can be used to refine some variables. This
is necessary because a single variable rule can be used to refine several variables. Once a rule has been
selected for one (or several) variable, resulting refinement variables can be calculated from its clauses.
The principle of rule research is the following:

• At the beginning the tool considers the set of abstract variables to refine

• It processes every theory that could be used (according to tactic, user pass or neither) from bottom to
top. For each theory:

– The tool processes all rules of theory from bottom to top. For each variable rule:

∗ Bart determines which variables can be refined by current rule
∗ Refined variables are removed from the set of remaining variables

This process stops when there are not variables to refine anymore, or when all variable rules to consider
have been treated. Variable refinement is successful if all variables have been associated with a rule. It is a
failure if all rules have been treated and some variables could not be refined.
For a certain rule, Bart determines which variables it can refine as follow:

• The tool tries every combination of values to instantiate joker list of V ARIABLES clause. For each
instantiation:

– Bart checks constraint expressed in WHEN clause against hypothesis stack, with jokers of
V ARIABLES clause instantiated

14



∗ If WHEN constraint could be checked, variables used to instantiate V ARIABLES
clause can be refined by this rule

∗ Variable refined by the rule are removed from set of remaining variables, to be sure they
won’t be used in following tried instantiation

If current rule has several jokers in V ARIABLES clause, there are more combinations to try than for
simple variable rules.

2.2.2 Substitutions refinement
Substitution refinement gathers operation, initialisation and structural rules. Operation and structure rules
are identical. Initialisation rules are simpler versions of operation rules. Substitution refinement is more
complex than variable refinement, as it can be recursive, i.e. result of refinement for a given substitution may
have to be refined too. Furthermore, for a given substitution, refinement may need several sub-processes
(use of SUB REFINEMENT clause or default refinement behaviours for parallel or semicolon). So
refinement sub-branches are created and the underlying structure that can be used to represent substitution
refinement is in fact a tree.
The substitution rule research process is simpler than for variables.

• For a substitution to refine, Bart processes each rule file as long as he could not find a rule.

• For each rule file it processes operation theories to consider (all theories, or a subset if tactic or user
pass is used) from bottom to top.

• For each theory it processes operation rules from bottom to top

• For each rule, Bart checks if it can be used to refine currently treated substitution.

If each rule file was processed by Bart and no rule could be found for a certain substitution, an operation
refinement may occur. Each operation rule has a pattern (REFINES clause) and may have a constraint
(WHEN clause).
The substitution refinement process depends, for given rule and substitution, on the presence and content of
SUB REFINEMENT , IMPLEMENTATION and REFINEMENT clauses.
SUB REFINEMENT clause contains a comma-separated list of sub-elements. Each sub-element left
part is a substitution that may contain jokers. These jokers must all have been instantiated by pattern
matching and constraint checking. Right part of the sub-element must be a single and still uninstantiated
joker. This clause is used to refine the given substitution and store the result in given joker. This is done
before calculation of the rule substitution result, so the sub-refinement can be used to express the result.
IMPLEMENTATION clause expresses the result of current rule. It contains a substitution which may
contain jokers. All these jokers must have been instantiated during pattern matching, constraint checking
or sub-refinement processing. IMPLEMENTATION clause may also contain concrete operation re-
finement variable declaration. Using IMPLEMENTATION clause means that given result is the final
result of current branch and does not need to be refined again.
REFINEMENT clause expresses the result of current rule. It contains a substitution which may contain
jokers. All these jokers must have been instantiated during pattern matching, constraint checking or sub-
refinement processing. REFINEMENT clause may also contain abstract or concrete operation refine-
ment variable declaration. Using REFINEMENT clause means that given result is not the final result
of current branch. The result of rule must be refined. IMPLEMENTATION and REFINEMENT
clauses can not be both used in a same rule. When a rule has been selected (and eventual sub-refinements
have been processed), the rule result is calculated by instantiating jokers of its result clause.
A rule can contain both SUB REFINEMENT and REFINEMENT clauses. In this case, each
subrefinement is calculated and stored in its joker. Then content of REFINEMENT clause is instantiated
and refined. For a substitution to refine, if no rule could be found, Bart will check if it can be refined using
a predefined behaviour. For some kinds of substitutions, Bart may know how to refine them if no rule is
present. Predefined behaviour can be the end of current branch (skip substitution refinement) or a simple
node of refinement tree. In this case, Bart may create one (BEGIN substitution refinement) or several
(semicolon refinement) subnodes in refinement tree for current substitution. For each new subnode created
by predefined refinement behaviour, the recursive refinement process is restarted as a rule or predefined
behaviour will be searched for each one.

15



2.2.3 Database organisation

The database that is coming along with Bart is a sample database, composed of 228 rules, requiring to be
adapted and extended to particular needs. It is provided mainly to show how such a set of rules can be
constituted, as it would be quite difficult for a newcomer to develop such a database from scratch. In short,
do not expect to fully automatically refine any B model with it, without any modification/addition.
This database is composed of 28 theories, decomposed as follows:

• 1 theory for predicates: this theory contains 1 definition that is used by most rules. The rule:

B0(@a) <=> (B0EXPR(@a) or SCALAR(@a))

defines that a parameter @a is B0-compliant if it either a B0 expression or a SCALAR.

• 2 theories for variables: these theories contain 4 rules for refining standard variables and producing
iterators. For example, the rule:

RULE scalar
VARIABLE

@a
TYPE

SCALAR(@a)
WHEN

(PR(@a : BOOL) &
match(@b, BOOL)) or

(PR(@a : INTEGER) &
match(@b, INT)) or

((SET(@b) or ENUM(@b))&
PR(@a : @b))

IMPORT_TYPE
@a : @b

CONCRETE_VARIABLES
@a

INVARIANT
@a : @b

END

allows to refine an abstract variable (of type BOOL, INTEGER or ENUM) into a concrete one of the
same type and same name. The tag SCALAR(@a) is added to the predicate stack.

• 2 theories for initialisations: these theories contain 9 rules for refining standard variables and iterators
initialisation. For example, the rule:

RULE scalar_ini2
REFINES
@a :: @b
WHEN
SCALAR(@a) &
PR(0 : @b)
IMPLEMENTATION
@a := 0
END

allows to implement the non-deterministic substitution @a :: @b as @a := 0 if 0 belongs to @b.

• 20 theories for operations: these theories contain 153 rules. For example, the rule:

16



RULE assign_a_b_6
REFINES

@a := @b
WHEN

B0(@a) &
DECL_OPERATION(@c <-- @d | BEGIN @c := @b END)

IMPLEMENTATION
@a <-- @d

END

implements the substitution @a := @b (where @a is B0-compliant), by calling the operation @d
declared as:

@c <-- @d =
BEGIN

@c := @b
END

in a SEEN component.

• 2 theories for structures: these theories contain 25 rules. For example, the rule:

RULE any_1
REFINES

ANY @a WHERE
@b

THEN
@c

END
REFINEMENT

@a :( @b );
@c

END

refines an ANY substitution into the sequence of two substitutions:

– not deterministic choice for @a
– execution of the substitution @c

• 1 theory for tactics: this theory is the main switch of the database, as it defines the mapping between
predicates and theories (what theories have to be applied on a particular predicate). For example, the
rule:

becomes_member_a_b => (@a :: @b)

associates the theory becomes member a b to the predicates matching @a :: @b. This theory con-
tains 1 rule for variable refinement, 1 rule for initialisation refinement and 34 rules for operation
refinement.

2.3 Application to Wayside Control Unit
In order to assess the tool, we have decided to apply Bart on the development of a part of the Wayside
Control Unit of the Roissy Airport Val Shuttle. This kind of system is safety critical (Safety Integrity Level
3). The related software was previously developped by ClearSy, by using Siemens Transportation Systems
own automatic refiner and would provide a good reference for assessing the tool.
In the following sections, the overall system is presented, as well as the functional specification of the
software being developped. Then the process of extending the refinement rules database is exposed, as well
as the resulting generated B models.

17



2.3.1 System Description

A railroad line is supposed to be divided into fixed blocks. The line has two directions ’up’ and ’down’.
Each block may only be connected to one upward block and to one downward block. So the line is quite
simple, since it has no switch. Figure 2.4 gives an example of such a line with 5 blocks.

Figure 2.4: A Railroad Line of 5 Blocks

Actually, this system is the simplification of a more realistic one handling switches.
Trains may drive up-bound or down-bound on the railroad line and they may change direction at any time.
The purpose of the functionality developed in this exercise is to establish safely, from the software point of
view, which blocks are occupied by a train and which are free. Here are the basic principles given by the
system analyses. For each block a detector located along the track called Trackside Detector (TD) is used
to detect trains. A train is equipped with an antenna located below the coach. When the antenna is above
a trackside detector, a signal inside the detector is produced, so the train presence may be detected. Now
building the software appears to be easy, since we just need to read for each block the state of its trackside
detector. However, this solution raises two issues, both related with safety:

• The information given by a trackside detector is not accurate enough on the border of detectors.

• Trackside detectors (or antennas) may be faulty.

Figure 2.5: Different types of detectors related to a block

To overcome those issues, the following elements are added to the system specification:

• A Border Detector (BD) is used at each borderline between two blocks to achieve accurate block
occupancy detection. When a block trackside detector or border detector is occupied, then the block
is considered to be occupied.

• Exit Detectors (ED) located after a block border (in the upward block or in the downward block) are
used to detect trains leaving the block. A block is considered to be released on the falling edge of one
of its exit detector.

• The Trackside Detector Loss (TDL) alarm is set for a block when a trackside detector inconsistency
happens. Such an inconsistency happens when a block trackside detector is free although it should
be occupied. When a TDL alarm is set, the procedure to release it requires that an operator at the
command center to send back an alarm acknowledgement.

• To avoid unjustified TDL alarm due to the lack of accuracy of trackside detectors, blocks may be
masked for TDL alarm when trains are located near a block border.

18



2.3.2 Functional Specification
The original software, developped years ago, is quite large, representing around 180 000 lines of code 1.
Redeveloping such a software is out of the scope of this project, so it was decided to re-engineer only
one function: the block function, in charge of determining which blocks are empty and which blocks are
occupied. The position of this function within the software is presented on Figure 2.6:

• the input function provides track information to the block function

• the route logic allocates blocks to a train in order to create a route

• the mode logic function determines which mode the train is running (nominal, degraded, faulty)

• the output function provides authorization information

Figure 2.6: Functional analysis

This information is critical, as authorizing a train to enter an occupied block may likely lead to a collision
between the two trains. The specification of the block function provided here is based on a real example,
although it has been simplified.
This software controls a railroad line, divided into fixed blocks. The purpose of the functionality developed
here is to manage safely block occupancy by trains. This functionality is composed of 6 services that are
described below and which are given a formal specification in B.

• release tdl alarm: This function releases Trackside Detector Loss (TDL) alarm. When a TDL alarm
acknowledgment is received from the Control Center, then TDL alarm is released for all blocks. If no
TDL alarm acknowledgment is received then TDL alarm remains unchanged.

IF cc_tdl_ack = TRUE THEN
tdla := {}
END

• set tdl alarm: This function sets Trackside Detector Loss (TDL) alarm. When a block does not
become in TDL alarm, then the alarm remains unchanged. A block becomes in TDL alarm, when the
following conditions are true:

1. The block is occupied.

2. The block is not masked.

3. The block trackside detector is free.
1see http://www.clearsy.com/pdf/val-roissy.pdf

19



tdla := tdla \/ (ob - mb - otd)

• occupy blocks: This function manages occupied blocks. Blocks that do not become occupied remain
unchanged. A block is consider to be occupied when one of its border detector is occupied or when
its trackside detector is occupied.

• unmask blocks: This function unmasks some blocks (for TDL alarm). Blocks which do not become
unmasked remain unchanged. A block is unmasked when the block is free or when all of the following
conditions are true:

1. The upward block has a free trackside detector or the upward block is free.

2. The downward block has a free trackside detector or the downward block is free.

mb := mb -(d_free_b \/ (cfg_b2b_up˜ [d_free_td \/ d_free_b]
/\ cfg_b2b_down˜[d_free_td \/ d_free_b]))

• mask blocks: This function masks some blocks (for TDL alarm). A block is masked when the fol-
lowing conditions are true:

1. The block is not in TDL alarm.

2. One of the block borders is occupied.

Blocks that do not become unmasked remain unchanged.

mb := mb \/ (d_bd2b[obd] - tdla)

• release blocks: This function manages released blocks. Blocks that are not released remain un-
changed. A block is considered to be released when the following conditions are true:

1. The block is not in TDL alarm or the block is being initialized by the Control Center.

2. A block exit detector, which was occupied during the previous cycle, is now released.

PRE
p_block : t_block

THEN
SELECT

p_block : cc_init &
p_block : (cfg_b2ed_up \/ cfg_b2ed_down)˜[oed_prev - oed]

THEN
ob := ob - {p_block}

WHEN
p_block /: tdla &
p_block : (cfg_b2ed_up \/ cfg_b2ed_down)˜[oed_prev - oed]

THEN
ob := ob - {p_block}

ELSE
skip

END
END

20



2.3.3 Added Refinement Rules
To be able to refine automatically the specification of these 6 services, only 6 rules were added to the project.
These new rules are not directly added to the patchrefiner, but inserted into a new file that would complement
the existing patchrefiner. 5 of these rules are OPERATIONS rules and 1 is a V ARIABLES rule.
These rules were designed during the interactive refinement process, where the user can determine why a
variable or an operation is not completely refined/implemented. If you have a look at the above services
specifications, you can see specific substitutions that would require specific refinement rules.
For example, the rule:

RULE R3
REFINES

@a := @a - ({@b} /\ @c)
IMPLEMENTATION

IMPORTED_OPERATION (
out => (#1),
in => (),
pre => (0 = 0),
body => (#1 := bool (@b : @c))) ;

IF #1 = TRUE THEN
IMPORTED_OPERATION (

out => (),
in => (),
pre => (0 = 0),
body => (@a := @a - {@b}))

END
END

implements the substitution @a := @a - ({@b} /\ @c) with the sequential call of:

• an operation which returns a boolean indicating if @b : @c holds

• a test evaluating the value of the boolean computed at the previous step

• an operation substracting {@b} from @a

The lines

IMPORTED_OPERATION (
out => (),
in => (),
pre => (0 = 0),
body => (@a := @a - {@b}))

lead to the creation of an operation with no input and no output parameter, but executing the substitution
@a := @a - {@b}.
The following rule

RULE R1
REFINES

@a := bool(@g : (@b \/ @c)˜[@d])
WHEN

@b : @e +-> @f &
@c : @e +-> @f &
B0EXPR(@g) &
DECL_OPERATION(@h, @i <-- @j(@k) |

PRE
@r

THEN
@h := bool(@k : dom(@b)) ||

21



IF @k : dom(@b)
THEN

@i := @b(@k)
ELSE

@i :: @l
END

END) &
DECL_OPERATION(@m, @n <-- @o(@p) |

PRE
@q

THEN
@m := bool(@p : dom(@c)) ||
IF @p : dom(@c)
THEN

@n := @c(@p)
ELSE

@n :: @s
END

END)
IMPLEMENTATION

#1,#2 <-- @j(@g);
IF #1 = TRUE
THEN

IMPORTED_OPERATION (
out => (@a),
in => (#2),
pre => (#2 : @f),
body => (@a := bool(#2 : @d)))

ELSE
@a := FALSE

END;
#1,#2 <-- @o(@g);
IF #1 = TRUE
THEN

IMPORTED_OPERATION (
out => (#1),
in => (#2),
pre => (#2 : @f),
body => (#1 := bool(#2 : @d)))

END;
@a := bool(#1 = TRUE or @a = TRUE)

END

is more complex than the previous one. The substitution being refined is @a := bool(@g : (@b \/ @c)˜[@d]).
If

• @b and @c are two partial functions

• @g is a B0-compliant expression

• @j and @o are two operations with one input parameter, two output parameters and complying with
the specified body

then a double test is performed to check wether @g : @b˜[@d] or @g : @c˜[@d].
Bart also provides some traces, indicating which rules have been applied. Variables refinement is quite
straightforward:

Variables refinement.

22



--- Refinement rules ---
Variable: mb, Rule: standard.setArray
Variable: ob, Rule: standard.setArray
Variable: tdla, Rule: standard.setArray

For operations refinement, more messages are generated by the tool:

Operations refinement.
-- Refinement of operation mask_blocks.

assign_a_union_b_c.assign_a_union_b_c_1

-- Refinement of operation read_ob.
assign_a_bool_belongs_b_c.assign_a_bool_belongs_b_c_39

-- Refinement of operation release_blocks.
select.select_with_else_split_cond_when
default.if_then_else_0
default.default
default.if_then_else_1
select.select_with_else_test_cond_when
default.if_then_else_0
default.default
default.if_then_else_1
default.default
select.select_with_else_simplify_cond
select.select_with_else_test_cond
default.if_then_else_0
default.default
default.if_then_else_1
default.default
select.select_with_else_test_cond
default.if_then_else_0
default.default
default.if_then_else_1
default.default

(...)

We can see at that occasion the rules applied on the refinement of the ANY ... WHERE ... THEN ... END
substitution.

Figure 2.7: Files generated by Bart

Below is the contents of one the components generated by the tool:

23



MACHINE
block_occupancy_1

SEES
configuration ,
inputs

ABSTRACT_VARIABLES
mb , ob , tdla

INVARIANT
mb <: t_block_i &
ob <: t_block_i &
tdla <: t_block_i

INITIALISATION
mb := {} ||
ob := t_block ||
tdla := t_block

OPERATIONS
mask_blocks_1(par_in_0_1) =
PRE

par_in_0_1 : t_block_i &
par_in_0_1 : t_block

THEN
mb := mb \/ ({par_in_0_1} /\ ((cfg_b2bd_up \/ cfg_b2bd_down)˜)[ obd] - tdla)

END;

...

unmask_blocks_1(par_in_0_1) =
PRE

par_in_0_1 : t_block_i &
par_in_0_1 : t_block

THEN
mb := mb - ({par_in_0_1} /\ (t_block - ob \/ ((cfg_b2b_up˜)[ t_block - otd \/ t_block - ob] /\ (cfg_b2b_down˜)[ t_block - otd \/ t_block - ob])))

END
END

Finally, all the components of the project are demonstrated by proof. This way, we are validating at the
same time the tool and the refinement rules database.

Figure 2.8: Status of the project

24



Ce chapitre a été rédigé par Joris Rehm.

25



26



Chapter 3

Modèle du temps et patrons

Sommaire
3.1 Définition et usage des patrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Exemple récurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Encodage des fonctions totales par des variables . . . . . . . . . . . . . . . . . . . . . 30
3.4 Patron d’agenda absolu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Patron d’agenda relatif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Patron de chronomètres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7.1 Modèle du patron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Insertion du patron raffiné . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.3 Représentation des contraintes temporelles . . . . . . . . . . . . . . . . . . . . . 39
3.7.4 Représentation des propriétés temporelles . . . . . . . . . . . . . . . . . . . . . 40

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

27



Nous allons introduire dans ce chapitre notre modélisation du temps, ces concepts nous permettront d’étudier
les propriétés temps-réel des systèmes. Cette modèlisation du temps est décrite sous la forme de patrons qui
permettent de partager à d’autres l’expérience que nous avons gagné lors de nos études de cas.
Notre motivation est d’incorporer un modèle du temps dancs les modèles B évènementiels, ce qui permet
d’étudier des systèmes temporels en conservant le langage et les outils standard.
L’idée générale est de réaliser une modélisation explicite du temps : des variables sont ajoutées pour ex-
primer l’état temporel du système. La progression du temps est exprimée par un évènement (nommé tic),
qui est le seul à faire varier les variables temporelles (et qui ne modifie pas les autres variables du système).
Il est aussi possible de concevoir un modèle ou la progression du temps est effectuée en parallèle avec les
transitions du système, mais ceci est plus délicat à exprimer et se révèle inadapté dans le cas d’un système
distribué (puisque que l’on peut avoir plusieurs transitions d’état dans le même instant). Comme les autres
évènements d’une machine temporisée ne doivent pas modifier les variables temporelles, il s’ensuit que
ces évènements sont instantanés. Ceci est compatible avec le concept des évènements qui sont des actions
atomiques et discrètes. Donc lorsque que l’on veut représenter une opération qui dure dans le temps, il faut
alors introduire deux évènements, un pour le début et l’autre pour la fin de l’opération (et contraindre le
temps qui s’écoule entre ces deux évènements).
Nous allons d’abord définir ce que nous entendons par patron. Puis nous présentons notre patron d’agenda
absolu puis relatif et enfin notre patron de chronomètre. Ces trois patrons seront appliqué sur un exemple
simple qui sera introduit après la définition des patrons.

3.1 Définition et usage des patrons

Un patron est un modèle représentant une solution pré-étudiée et générique à une tâche de conception ou
d’étude d’un phénomène.
Un patron devrait être créé lorsque l’on observe des comportements similaires ou des taches répétitives.
Le patron doit alors proposer une solution générique que l’on peut réutiliser dans les différents cas du
phénomène identifié. Cette solution est générique mais l’appliquer demande néanmoins un effort car les
problèmes considérés font souvent preuve d’une grande variété de forme.
La motivation est de pouvoir faire face efficacement à des situations complexes. Il s’agit aussi de travailler
de manière méthodique et de rendre le développement plus systématique. Les avantages attendus sont de
travailler plus vite et d’obtenir un résultat de meilleur qualité (moins d’erreur, plus structuré, maintenable
et analysable).
Étymologiquement un patron est un modèle sur lequel on fabrique des objets. Il peut s’agir par exemple
d’une partie de vêtement mais aussi d’une forme à peindre ou d’une pièce de bois en lutherie.
Un usage notable des patrons à été fait en 1977 concernant l’architecture (des bâtiments). Le livre [?]
propose un vaste catalogue de solutions, à la conception de bâtiments, décrites dans un vocabulaire codifié.
Et bien sûr en informatique, plus précisément dans le domaine de la conception objet, l’usage des design
pattern (patron de conception) constitue un phénomène important depuis la parution de [?].
En allant plus loin dans la définition des patrons, on peut remarquer qu’ils proposent un niveau d’abstraction
supplémentaire par rapport au langage usuel du domaine considéré. Par exemple, dans le monde de la
conception objet, on considère des objets appartenant à une certaine classe. Mais quand un développeur
applique un patron pour créer ses classes, un autre développeur pourra les reconnaı̂tre comme faisant partie
de ce patron. Il s’agit bien d’un enrichissement du langage puisque les objets conçus à partir d’un patron
auront une signification commune et supplémentaire (à condition, bien sur, de connaitre et de reconnaitre le
patron). Cette sémantique est donnée dans le document (ou les connaissances) de référence qui décrivent le
patron.
Ceci est d’autant plus vrai dans le domaine des méthodes formelles puisque la raison d’être des modèles
(formels) est de porter une sémantique. En conception objet, les design patterns sont principalement vu
comme un couple problème/solution. Il nous semble que, dans notre domaine, parler uniquement de
problème est réducteur. Certes nous faisons face à un problème de modélisation mais il est plus juste
de parler d’un aspect que l’on souhaite modéliser ou étudier.
En B évènementiel la solution apportée par le patron peut être résumée (du moins son encodage) par un
modèle. Il s’agit de donner la forme générale et générique de la solution proposée pour exprimer l’aspect
ou le comportement traité par le patron.

28



Cette expression doit être instanciée pour chaque occurrence d’un aspect identifié dans le système étudié.
Le patron formalise un ensemble de concepts qui, ensemble, caractérisent un comportement particulier.
Par exemple le comportement d’action-réaction est formé par les aspects d’action, de réaction forte et de
réaction faible.

Mais ce processus ne résume que partiellement le processus qui l’on doit mettre en œuvre pour appliquer
un patron. En effet, l’activité d’instantiation du patron sur le problème ne peut se faire que si l’on a bien
identifié les comportements du système étudié. Le documentation de référence du patron doit aider à cette
tâche en décrivant le contexte et les caractéristiques des aspects à identifier.

En B évènementiel, l’introduction d’un nouvel aspect dans un développement prouvé se fait lors d’un raf-
finement. On fait parfois la distinction entre un raffinement “horizontal” ou “vertical”. Un raffinement
horizontal superpose un nouveau comportement dans un modèle sans modifier ce qui existait déjà (il n’y a
pas de preuve de raffinement à faire). Ce type de raffinement est utilisé pour introduire les spécifications en
plusieurs étapes. Alors qu’un raffinement vertical transforme effectivement une donnée ou un évènement,
c’est à dire que des éléments de la machine abstraite disparaissent (comme des variables, des gardes) et l’on
doit montrer que les éléments que l’on a ajoutés simulent le même comportement. Dans ce type de raffine-
ment, les obligations de preuves expriment les raffinements de données ou le passage de la spécification à
l’implémentation.

m0 

m1 

P

Quand on considère un patron, les éléments que l’on ajoute lors du raffinement sont formalisés par le modèle
du patron. On cherche donc à passer d’un modèle m0 à un modèle m1 en utilisant le patron P. Dans le cas
d’une spécification initiale qui est directement temporelle, on peut prendre un modèle vide pour m0. Il
est intéressant de noter que entre m1 et P nous avons aussi une relation de raffinement. Nous avons donc
deux relations de raffinement, en pratique les outils logiciels ne sont pas capables de vérifier ce double
raffinement. Dans la suite de ce chapitre nous montrerons effectivement la relation de raffinement entre le
modèle de l’exemple m1 et le patron P. Mais en général, la relation entre m1 et P est facile à vérifier, il s’agit
principalement de renommer les éléments et de les recopier plusieurs fois dans le modèle. C’est pourquoi
nous ne détaillerons pas systématiquement et formellement la relation entre les modèles et le patron dans
les études de cas. Par contre la relation entre m0 et m1 peut être complexe, car c’est ici que nous allons
trouver les obligations de preuves introduisant les démonstrations sur le système étudié.

Il serait possible d’étendre les outils pour prendre en compte le raffinement multiple. Dans le cas général,
cela peut être complexe à cause d’éléments partagés entre les modèles abstraits, par contre si tous ces
modèles sont indépendants deux à deux (pas de variable, ni d’évènement partagés) alors il s’agit rien de
plus qu’une relation de raffinement répétée. De cette manière il est possible d’importer des invariants qui
serait définis au niveau du patron. Il n’y aurait plus besoin de les prouver directement par invariance mais
de prouver que l’on raffine correctement le patron, c’est qui est souvent plus simple à réaliser.

Dans nos études de cas, il s’agit de montrer qu’un système temporel implémente correctement une spécification
fonctionnelle (non-temporelle). Typiquement les premières machines et raffinements introduisent une spécification
non-temporelle (raffinement horizontal), dans ce type de modèles le comportement temporel est exprimé
abstraitement. Ensuite cette partie abstraite est supprimée au profit du vrai comportement temporel (raf-
finement vertical). Dans cette étape de raffinement, les obligations de preuves de raffinement permettent de
démontrer la correction du comportement temporel.

29



3.2 Exemple récurrent
Pour illustrer nos propos, nous allons appliquer tous les patrons de ce chapitre sur le même exemple. Il
s’agit d’un modèle simple mettant en jeu une lampe, du type de celle que l’on trouve dans les couloirs,
associée à un minuteur qui se charge de l’éteindre après un certain laps de temps. L’état allumé de la lampe
est exprimé par une variable de type booléen lo (Light On). Un évènement on représente l’allumage tandis
qu’un évènement off représente l’extinction.

MACHINE m0
VARIABLES lo
INVARIANTS

inv1: lo ∈ BOOL
EVENTS
INITIALISATIONS =̂ . . .
on =̂ . . .
off =̂ . . .
END //m0

Initialement la lampe est éteinte.
INITIALISATIONS =̂

BEGIN
act1: lo := FALSE

END
A n’importe quel moment on peut actionner le bouton qui allume la lampe (pas de garde).

on =̂
BEGIN

act1: lo := TRUE
END

Si la lampe est allumée, le minuteur est susceptible de l’éteindre. Pour le moment nous n’avons pas de
contraintes temporelles.

off =̂
WHEN

grd1: lo = TRUE
THEN

act1: lo := FALSE
END

Les transitions possibles peuvent se voir dans le graphe ci-dessous.

lo=FALSE lo=TRUEinitialisation

on
off

on

Le modèle ci-dessus ne comporte pas d’argument temporel, il s’agit simplement d’un squelette sur lesquels
nous allons appliquer nos patrons. Informellement, la contrainte temporelle à respecter est qu’il faut que
l’évènement off survienne dans un délai compris entre c− d et c + d unité de temps après l’évènement on.
Les constantes c et d étant définies dans un contexte avec comme axiome c− d > 0. La valeur d est là pour
représenter l’imprécision possible du minuteur et c est la durée pendant laquelle on veut que la lampe soit
allumée.

3.3 Encodage des fonctions totales par des variables
Dans les divers patron décrit dans ce chapitre nous utilisons beaucoup de fonctions totales ayant un domaine
fini et de cardinalité constante et connue, par exemple

f ∈ {a, b, c}→ F.

30



En particulier, nous utilisons souvent un ensemble d’identifiants associé aux évènements d’un modèle (il
n’est pas possible de faire directement référence à un nom d’évènement dans une modèle B évènementiel).

Ce type de fonctions peut être encodé par plusieurs variables (en fait autant que card(dom(f))). Il est ainsi
possible de remplacer les valeurs provenant des applications de la fonction (par exemple f(a), f(b), f(c))
par ces variables (par exemple f a, f b, f c). Les expressions plus complexes comme les quantifications
peuvent aussi être remplacées en instanciant explicitement la quantification sur tout le domaine. L’intérêt
principale de ce raffinement de donnée est de faire disparaitre ces quantifications, il est aussi plus simple de
manipuler plusieurs variables qu’une seule fonction (mais moins concis).

3.4 Patron d’agenda absolu

Nous allons maintenant présenter un patron basé sur l’idée d’un agenda. Le but de ce patron est de fournir
des dates de déclenchement futur pour certains évènements. C’est à dire que l’on va prévoir et forcer un
évènement à se déclencher. Dans ce patron, le délai pour le déclenchement d’un évènement est explicite-
ment considéré, il est spécifié dans une variable du modèle.

Nous l’avons nommé ce patron “agenda” puisqu’il sert à noter la date des évènements et nous l’avons
qualifié d’absolu car l’instant zéro des dates est le début du système, c’est à dire l’instant où l’évènement
d’initialisation se déclenche.

Modèle du patron

Le patron contient une variable at (Activation Time) qui est une fonction associant à chaque évènement (en
fait à un identifiant qui représentera l’évènement) un ensemble de nombres. Cet ensemble de nombres sont
les instants (dans le futur) où l’évènement associé sera déclenché. Nous avons de plus la variable now qui
est le délai écoulé depuis le déclenchement de l’évènement d’initialisation (c’est à dire l’instant courant).

Nous trouvons ci-dessous les définitions et invariants du modèle du patron. Il faut de plus considérer un
ensemble porteur F défini dans un contexte non représenté ici. Cet ensemble F définit des identifiants pour
représenter les évènements du système sur lequel on applique le patron. Le dernier invariant trouvera son
explication après la présentation du modèle.

MACHINE tp at
VARIABLES now, at
INVARIANTS

inv1: now ∈ N
inv2: at ∈ F → P(N)
inv3: ∀e·e ∈ dom(at) ∧ at(e) 6= ∅⇒ now ≤ min(at(e))

EVENTS
INITIALISATIONS =̂ . . .
use =̂ . . .
tic =̂ . . .
END //tp at

Initialement now se trouve donc logiquement à zéro (la valeur importe peu, on prend zéro par convention),
quand aux dates d’activation contenues dans at elles sont libres.

INITIALISATIONS =̂
BEGIN

act1: now := 0
act2: at :∈ F → P(N)

END

L’évènement set du patron représente la modification des dates de l’agenda pour l’ensemble e d’identifiants
d’évènements, il faut que les nouvelles dates soient dans le futur (après now).

31



set =̂
ANY e,neat
WHERE

grd1: e ⊆ dom(at)
grd2: neat ∈ e→ P({x|now < x})

THEN
act1: at := at �− neat

END

L’évènement use représente le déclenchement d’un évènement ayant pour identifiant e, il se déclenche
quand la date courante (now) est égale à une date prévue dans l’agenda (at(e)) de cet évènement. Lors du
déclenchement la date est enlevée de l’agenda.

use =̂
ANY e
WHERE

grd1: e ∈ dom(at)
grd2: now ∈ at(e)

THEN
act1: at(e) := at(e) \ {now}

END

L’évènement tic de progression du temps fait avancer le temps courant now, toutes les dates de l’agenda
sont des bornes supérieurs à cette progression du temps. En effet, nous voulons déclencher certains évènements
à certaines dates, il faut donc faire des pas de progression du temps suffisamment petits pour ne pas “oublier”
des évènements. En fait, forcer le déclenchement d’un évènement à une certaine date revient à bloquer le
temps à cette date tant que cet évènement ne s’est pas déclenché. Plus précisément, la progression du temps
est limitée à min(ran(at)). Lorsque l’évènement est effectivement déclenché (évènement use) la date est
supprimée, ce qui débloque la progression du temps.

tic =̂
ANY shift
WHERE

grd1: 0 < shift
grd2: ∀e·e ∈ dom(at) ∧ at(e) 6= ∅⇒ now + shift ≤ min(at(e))

THEN
act1: now := now + shift

END

Comme nous l’avons déjà dit, cette manière de faire implique que toutes les valeurs de l’agenda sont dans
le futur, ce qui s’exprime dans l’invariant inv3 du modèle.

Il faut remarquer que ce patron propose un modèle assez fort (contraint) car en principe la présence d’un
élément dans l’agenda d’un évènement est équivalent à la garde de cet évènement. L’exemple ci-dessous
illustre cela.

Exemple

Nous retrouvons notre exemple de minuteur à lampe pour illustrer ce patron. On peut voir ci-dessous
l’entête et les invariants. Nous avons effectivement indiqué deux raffinements dans ce modèle. Comme
l’outil ne le gère pas, nous avons uniquement entré le raffinement entre le patron et le modèle. Pour vérifier
manuellement le raffinement entre le modèle sans les contraintes temporelles et celui ci, il suffit de vérifier
le raffinement de l’évènement off. Les invariants importants à considérer sont d’abord le numéro quatre qui
précise que l’agenda a une cardinalité inférieure ou égale à un, et que l’unique date possible de l’agenda est
entre le moment présent et c + d unités de temps dans le futur. Quand à l’invariant numéro cinq il donné
l’équivalence entre l’état de la lampe et le présence d’une date dans l’agenda. Il ne faut pas oublier que
lors du raffinement on conserve les invariants abstraits, on a donc aussi le droit d’utiliser l’invariant inv3
du patron tp at. Nous avons appliqué, le raffinement de donnés sur la fonction at ce qui permet d’utiliser
uniquement la variable at o à la place de at(o), o étant l’identifiant associé à l’évènement on.

32



MACHINE m1 at
REFINES m0,tp at
VARIABLES lo, now, at o
INVARIANTS

inv1: lo ∈ BOOL
inv2: now ∈ N
inv3: at o ⊆ N
inv6: at = {o 7→ at o}
inv4: ∃x·x ∈ now .. now + c + d ∧ at o ⊆ {x}
inv5: lo = FALSE ⇔ at o = ∅

EVENTS
INITIALISATIONS =̂ . . .
on =̂ . . .
off =̂ . . .
tic =̂ . . .
END //m1 at

L’initialisation est prévisible avec la lampe éteinte, un temps courant égale à zéro et pas de valeurs dans
l’agenda.

INITIALISATIONS =̂
WITH

at’: at′ = {o 7→ at o′}
BEGIN

act1: lo := FALSE
act2: now := 0
act3: at o := ∅

END

Quand la lampe s’allume, on prend une date (de manière non déterministe) dans l’intervalle possible et on
l’ajoute à l’agenda. Il faut remarquer que dans ce cas, cette valeur est connue et peut être utilisée dans les
preuves.

on =̂
REFINES on,set
ANY dc
WHERE

grd1: dc ∈ c− d .. c + d
WITH

neat: neat = {o 7→ {now + dc}}
e: e = {o}

THEN
act1: lo := TRUE
act2: at o := {now + dc}

END

L’arrêt de la lumière (évènement off) se déclenche quand l’instant courant est égal à la date placée dans
l’agenda at o. C’est un modèle assez fort car on est capable de distinguer les cas ou l’évènement off est en
attente de déclenchement (lampe allumée) avec la valeur précise de ce déclenchement et le cas ou la lampe
est éteinte. Il y a en fait une équivalence entre la valeur de lo et celle de l’agenda (voir invariant inv5).
Il s’ensuit qu’on peut complètement remplacer la garde abstraite par la présence de l’instant présent dans
l’agenda (raffinement de l’évènement off avec disparition d’une garde).

33



off =̂
REFINES off,use
WHEN

grd2: now ∈ at o
WITH

e: e = o
THEN

act1: lo := FALSE
act2: at o := at o \ {now}

END

Dans ce patron, l’évènement tic du progression du temps est complètement conforme à celui du patron et
nous n’avons pas besoin d’apporter des modifications (en dehors du raffinement de donné de la fonction
at).

tic =̂
REFINES tic
ANY shift
WHERE

grd2: 0 < shift
grd3: at o 6= ∅⇒ now + shift ≤ min(at o)

THEN
act1: now := now + shift

END

3.5 Patron d’agenda relatif

Le patron d’agenda utilise une variable (now) pour spécifier le temps courant du système, ceci permet
à l’évènement tic d’avoir une forme très simple : il suffit d’incrémenter now pour représenter le pas-
sage du temps. Cette variable augmente donc indéfiniment et, en cas d’utilisation d’un model-checker,
cela pose problème puisque le nombre d’état est infini à cause de cette variable. Pour éviter d’introduire
systématiquement des états différents à cause de now, on peut supprimer cette variable du modèle et rem-
placer l’agenda absolu at par un agenda relatif rat (Relative Activation Time). Nous l’avons qualifié de
relatif car les dates contenu dans l’agenda utilisent le temps courant comme repère plutôt que l’initialisation
du système.

Cette verson de l’agenda est équivalente à la version absolue, c’est à dire qu’en considérant la formule

∀e·e ∈ dom(at)⇒ (∀x·x ∈ rat(e)⇔ x + now ∈ at(e))

on peut réécrire les patrons de l’un vers l’autre et vice-versa. Nous avons d’ailleur prouvé le raffinement
dans les deux sens entre les deux versions.

Ces nouvelles valeurs peuvent être vus comme des comptes-à-rebours avant le déclenchement des évènements
associés. Comme toutes les valeurs ont pour repère le temps courant now, cette variable n’est plus utile :
le temps courant est simplement zéro. L’évènement tic de passage du temps s’en trouve modifié, il faut en
effet faire décroitre toutes les valeurs de rat pour représenter le passage du temps.

Modèle du Patron Le modèle du patron est similaire à celui de l’agenda, avec évidement les conséquences
de la modification expliquée ci-dessus. La variable now disparait et est remplacée par 0 si nécessaire.
L’agenda at est replacé par l’agenda relatif rat. Au niveau de l’invariant, il suffit maintenant de prendre le
co-domaine de rat dans les entiers positifs pour s’assurer que les date de l’agenda sont dans le futur. Et
similairement on retrouve les trois évènements qui composaient le modèle du patron d’agenda absolu.

34



MACHINE tp rat
SEE tp c0
VARIABLES rat
INVARIANTS

inv1: rat ∈ E → P(N)
EVENTS
INITIALISATIONS =̂ . . .
set =̂ . . .
use =̂ . . .
tic =̂ . . .
END //tp rat

L’initialisation des valeurs est libre.
INITIALISATIONS =̂

BEGIN
act1: rat :∈ E → P(N)

END

Pour ajouter, modifier ou remplacer des dates de l’agenda sur un ensemble e d’identifiant d’évènements on
dispose des nouvelles valeurs nerta qui sont surchargées sur l’agenda.

set =̂
ANY e,nerat
WHERE

grd1: e ⊆ dom(rat)
grd2: nerat ∈ e→ P(N1)

THEN
act1: rat := rat �− nerat

END

Quand le compte-à-rebours d’une date de l’agenda arrive à zéro on peut déclencher l’évènement associé et
supprimer cette valeur de l’agenda.

use =̂
ANY e
WHERE

grd1: e ∈ dom(rat)
grd2: 0 ∈ rat(e)

THEN
act1: rat(e) := rat(e) \ {0}

END

Le passage du temps a pour effet de décroitre les valeurs de l’agenda. Pour exprimer cela on utilise la
fonction adds qui prend en entier en paramètre et renvoie une fonction incrémentant toutes les valeurs d’un
ensemble par cet entier, par exemple adds(2)({1, 3}) = {3, 5} (voir la définition ci-après).

tic =̂
ANY shift
WHERE

grd1: 0 < shift
grd2: ∀e·e ∈ dom(rat) ∧ rat(e) 6= ∅⇒ shift ≤ min(rat(e))

THEN
act1: rat := rat; adds(−shift)

END

La fonction adds est définie par les axiomes suivants:

CONSTANTS adds
AXIOMS

axm4: adds ∈ Z→ (P(Z)→ P(Z))
axm5: ∀as, bs, c·as ⊆ Z ∧ bs ⊆ Z ∧ c ∈ Z

⇒(as 7→ bs ∈ adds(c)⇔ (∀a·a ∈ as⇔ a + c ∈ bs))

35



3.6 Exemple

Notre exemple courant peut ainsi être réécrit de la manière exposée ci-dessous. On peut vérifier que les
propriétés en invariants sont les même modulo la réécriture entre at et rat. Et ce modèle possède un
nombre d’état fini, à condition, bien sur, de donner une valeur aux constantes c et d.

MACHINE m1 rat
REFINES tp rat
SEE c1, c1 at
VARIABLES lo,rat o
INVARIANTS

inv1: lo ∈ BOOL
inv2: rat o ∈ P(N)
inv5: rat = {o 7→ rat o}
inv3: ∃x·x ∈ 0 .. c + d ∧ rat o ⊆ {x}
inv4: lo = FALSE ⇔ rat o = ∅

EVENTS
INITIALISATIONS =̂ . . .
on =̂ . . .
off =̂ . . .
tic =̂ . . .
END //m1 rat

INITIALISATIONS =̂
WITH

rat’: rat′ = {o 7→ rat o′}
BEGIN

act1: lo := FALSE
act3: rat o := ∅

END

on =̂
REFINES on,set
ANY dc
WHERE

grd1: dc ∈ c− d .. c + d
WITH

e: e = {o}
nerat: nerat = {o 7→ {dc}}

THEN
act1: lo := TRUE
act2: rat o := {dc}

END

off =̂
REFINES off,use
WHEN

grd1: 0 ∈ rat o
WITH

e: e = o
THEN

act1: lo := FALSE
act2: rat o := rat o \ {0}

END

De nouveau l’évènement tic est simplifié par le raffinement de donné sur la fonction rat. Ce qui permet
d’utiliser une notation avec un ensemble par compréhension plus simple que la définition de adds pour
décrémenter les valeurs.

36



tic =̂
REFINES tic
ANY shift
WHERE

grd1: 0 < shift
grd3: rat o 6= ∅⇒ shift ≤ min(rat o)

THEN
act1: rat o := {x·x ∈ rat o|x− shift}

END

3.7 Patron de chronomètres

Ce patron de chronomètre est le dernier que nous avons développé. Il provient d’une recherche pour dégager
l’élément fondamental nécessaire à l’étude des propriétés temporelles quantitatives. Cet élément est la durée
qui s’est écoulée depuis le dernier déclenchement d’un évènement. Par analogie, nous allons appeler cette
donnée le chronomètre d’un évènement. Elle est a des similarités avec les horloges des automates tempo-
risés. Mais nous avons choisi le terme chronomètre car cette donné est remise à zéro lors du déclenchement
de l’évènement surveillé, alors qu’une horloge n’est à priori jamais remise à zéro.
Le patron comporte plusieurs volets, le premier est la machine B évènementielle contenant le modèle du
temps que nous allons par la suite raffiner et introduire dans les modèles à étudier.

3.7.1 Modèle du patron

Nous avons en effet besoin d’un modèle qui représentera le phénomène du temps et de son écoulement. Plus
précisément, nous allons considérer un ensemble de valeurs nommées s’incrémentant de manière uniforme
avec le passage du temps et pouvant être remis à zéro individuellement. Pour cela prenons un modèle
tp s (Time Pattern Since) présentant une variable s (Since) qui est une fonction totale d’un ensemble E
d’identifiant d’évènement vers les entiers.

MACHINE tp s
VARIABLES s
INVARIANTS

inv1: s ∈ E → N
EVENTS
INITIALISATIONS =̂ . . .
reset =̂ . . .
tic =̂ . . .
END //tp s

Le modèle possède trois évènements que nous détaillons çi-dessous. Le premier est l’initialisation.
INITIALISATIONS =̂

BEGIN
act1: s :∈ E → N

END

On remarquera que la valeur initiale est prise sans contrainte dans l’ensemble des entiers positifs. Nous
avons ensuite l’évènement représentant la remise à zéro d’un chronomètre particulier.

reset =̂
ANY e
WHERE

grd1: e ∈ E
THEN

act1: s(e) := 0
END

Et enfin, l’évènement représentant la progression du temps.

37



tic =̂
ANY shift
WHERE

grd1: 0 < shift
THEN

act1: s := {e·e ∈ E|e 7→ s(e) + shift}
END

Cet évènement incrémente la valeur de tous les chronomètres par une valeur shift non nulle.

3.7.2 Insertion du patron raffiné
Le modèle du patron ne constitue que partiellement le patron. En effet, ce modèle va être utilisé d’une
manière précise et cette méthode d’utilisation fait aussi partie du patron. Comme nous l’avons déjà dit,
l’idée de base est de considérer la durée s’étant écoulée depuis le dernier déclenchement d’un évènement.
Pour cela, nous allons superposer au modèle à étudier une version raffinée du patron. Pour tout évènement
chronométré on va lui superposer l’évènement reset du patron en raffinant la variable e par un identifiant
représentant l’évènement.
Exemple : On prend comme modèle à étudier l’exemple de la lampe de ce chapitre. Le seul évènement que
l’on veut chronométrer est on, le résultat de l’application du patron est donné ci-dessous.

on =̂
REFINES on,reset
WITH

e: e = o
BEGIN

act1: lo := TRUE
act2: s(o) := 0

END
Il faut répéter cette opération de superposition pour chaque évènement que l’on veut chronométrer. Ainsi
l’ensemble E doit contenir des identifiants en bijection avec les évènements étudiés.
Enfin il convient d’insérer tel quel l’évènement tic du patron.
Nous avons ainsi superposé dans le modèle à étudier les éléments nécessaires pour représenter des con-
traintes et des propriétés temporelles (que nous ajouterons par la suite). Mais auparavant, nous pouvons
apporter une simplification sous la forme d’un raffinement de données.
En effet, une variable fonction totale (par exemple f ∈ E → F ) ayant pour domaine un ensemble fini,
de cardinalité n constante et connue peut être remplacée par n variables (distinctes). Il suffit pour cela de
remplacer les termes de la forme f(x), avec x ∈ E, par un variable que l’on appellera par convention f x
(qui doit évidement ne pas déjà être une variable libre). De plus cela permet de simplifier l’expression de
l’incrémentation dans l’évènement tic.
Dans notre exemple les deux évènements deviennent :

on =̂
REFINES on,reset
WITH

e: e = o
BEGIN

act1: lo := TRUE
act2: s o := 0

END

tic =̂
REFINES tic
ANY shift
WHERE

grd1: 0 < shift
THEN

act1: s o := s o + shift
END

Il faut aussi ajouter l’invariant de typage et de collage

38



inv2: s o ∈ N
inv5: s = {o 7→ s o}

Remarquons que si la cardinalité de E est n on aurait n lignes similaires à act1 dans l’évènement tic.
Nous faisons systématiquement ce raffinement après l’application du patron car un ensemble fini de vari-
ables est plus simple à manipuler qu’une fonction, en particulier au niveau de l’évènement tic (les preuves
associées à tic peuvent être nombreuses). Notons que ce raffinement de donné ne transforme pas le com-
portement du système.
De manière plus anecdotique, le paramètre shift de l’évènement de progression du temps peut être raffiné
par la constante 1.
Ceci clos le volet de l’insertion du patron, nous avons inséré dans le modèle un modèle du temps mais nous
n’avons pas encore ajouté de réel comportement temporel au système, nous n’avons pour le moment que la
structure pour le faire.

3.7.3 Représentation des contraintes temporelles
Nous allons ajouter des contraintes sur la durée qui doit s’écouler entre deux déclenchements d’évènements.
Et ceci est possible entre deux évènements différents ou pour le même évènement cela ne change rien à la
méthode.

Borne supérieure bloquante

Considérons un premier cas (le plus compliqué) : nous voulons forcer la durée d entre deux évènements e
et f à être inférieur à une certaine valeur v. Notons bien qu’il s’agit d’une obligation pour le déclenchement
de l’évènement f et non pas d’une permission. L’évènement e n’est pas impacté, il sert juste de repère
temporel et l’on doit disposer d’un chronomètre s e (Since E) sur cet évènement. Dans ce cas là, il s’agit
d’une borne supérieur sur la durée d. Pour représenter cette borne supérieur dans le modèle, nous allons
placer une contrainte sur la progression du temps (c’est à dire l’évènement tic). L’idée est que dire qu’un
évènement doit se produire avant un moment donné, revient à dire que le temps ne doit pas s’écouler au
delà de ce moment tant que l’évènement n’a pas été exécuté.
Pour bloquer la progression du temps il faut placer une borne supérieure sur la valeur shift. Rappelons que
l’évènement tic de progression du temps incrémente tous les chronomètres par une valeur shift non nulle. Si
on veut limiter le delai d à une valeur a, il faut alors que shift ≤ a−d, de manière équivalente d+ shift ≤ a.
En fait le délai d est donné par le chronomètre s e .
Mais cette limitation de shift ne doit intervenir que lorsque l’évènement f peut se déclencher ; c’est à dire
lorsque sa garde G est vrai. Finalement nous devons donc ajouter en tant que garde de tic le prédicat

G⇒ s e + shift ≤ a.

Exemple : Dans notre exemple de lampe, nous voulons que la lampe soit éteinte après un délai dans
l’intervalle c − d .. c + d. Pour le moment, nous allons seulement considérer l’obligation pour la lampe
d’être éteinte après c + d unités de temps. La garde de l’évènement off qui éteint la lampe est lo = TRUE
et le chronomètre de l’évènement on qui l’allume est s o ; il faut donc ajouter la garde grd2 à tic, voir
ci-dessous.

tic =̂
REFINES tic
ANY shift
WHERE

grd1: 0 < shift
grd2: lo = TRUE ⇒ s o + shift ≤ c + d

THEN
act1: s o := s o + shift

END
Il est possible que nous ayons besoin de considérer non pas un chronomètre par évènement mais un en-
semble de chronomètres par évènement. Par exemple dans le cas d’un système distribué si l’évènement
représente une action que réalise tout un ensemble d’appareils distribués alors il faut bien considérer un
chronomètre pour chaque système en particulier. Formellement on peut donc associe le chronomètre à
l’évènement paramétré par une variable qui représente l’entité distribuée.

39



Borne inférieure

Notre deuxième cas est un borne inférieure b sur le délai entre le déclenchement d’un évènement e et f . La
solution est simple, il suffit d’ajouter une garde b ≤ s e dans f .
Exemple : La lampe peut s’éteindre à partir de c− d unités de temps, on ajoute donc la garde grd2 dans off.

off =̂
WHEN

grd1: lo = TRUE
grd2: c− d ≤ s o

THEN
act1: lo := FALSE

END

3.7.4 Représentation des propriétés temporelles
Nous avons maintenant définit comment obtenir une machine contenant un modèle du temps et des con-
traintes temporelles. Le dernier volet de l’application du patron consiste à écrire les propriétés du système
que l’on veut vérifier sous la forme d’un invariant. Pour cela nous pouvons utiliser les valeurs des chronomètres
pour décrire les propriétés que nous voulons. Celles-çi dépendent du système, et l’on peut utiliser toutes
expressions arithmétiques nécessaires légales en B évènementiel pour les exprimer.
On peut aussi remarquer que les bornes supérieures des contraintes temporelles, celles qui apparaissent dans
la garde de tic, mènent systématiquement à une clause d’invariant. En effet, en considérant un chronomètre
s e (d’un évènement e avec une garde G) avec une borne supérieure a, nous avons systématiquement en
invariant :

G⇒ s e ≤ a

Cela se vérifie aisément au vue de la forme des gardes de tic.
Exemple : Dans l’exemple de la lampe, nous trouvons d’abord l’invariant tel que décrit ci dessous puis un
autre concernant la borne inférieure.

inv3: lo = TRUE ⇒ s o ≤ c + d
inv4: lo = FALSE ⇒ c− d ≤ s o

Il faut noter qu’un invariant comme inv4 n’est pas systématiquement valide.
De plus, lors de la conception du modèle il faut prendre garde à l’initialisation. En effet le concept des
chronomètres sous-entend que dans tous les états du système, tous les évènements se sont déclenchés
dans le passé et on connait la durée depuis laquelle cela s’est produit. Évidement ce n’est pas le cas
lors de l’initialisation, il faut donc donner une valeur artificielle aux chronomètres de manière à respecter
l’invariant. Si on veut éviter d’avoir à considérer ce cas d’initialisation, il est possible d’utilise un type
plus complexe que les entiers ou l’on pourrait avoir une valeur spéciale indiquant que l’évènement ne s’est
jamais déclenché dans le passé. Toutefois le recours à ce type d’expression complexifie le modèle et ne jus-
tifie pas systématiquement. De plus rappelons que l’initialisation est surtout là pour démontrer qu’il existe
un état initial qui respecte l’invariant.
Exemple : pour l’initialisation de l’exemple, comme le système commence avec la lampe éteinte il faut
prendre une valeur pour le chronomètre après la borne supérieur du délai d’extinction.

INITIALISATIONS =̂
WITH

s’: s′ = {o 7→ c + d + 1}
BEGIN

act1: lo := FALSE
act2: s o := c + d + 1

END

3.8 Conclusion
Dans ce chapitre nous avons définit notre point de vue sur les patrons et donné en exemple trois patrons
servant à aider à la modélisation de systèmes temporels. Nous pensons que ces exemples montrent l’intérêt
de capitaliser l’expérience obtenue en modélisant et prouvant des systèmes. Ces patrons sont à prendre

40



comme le fruit d’expérimentations sur des études de cas et nous espérons qu’ils permettront à d’autre
personnes d’accélérer leurs études de systèmes temporisés.
Les deux concepts (en regroupant les variantes de l’agenda relatif et absolu) que nous avons défini sont
complémentaires, en effet, le patron d’agenda permet de contraindre fortement le déroulement d’un système
dans le temps tandis que le patron de chronomètre superpose des contraintes temporelles de manière plus
lâche sur le comportement sur système.

41



42



Chapter 4

Applying patterns for modelling
pacemaker-like systems

Sommaire
4.1 Overview of Pacemaker System and Environment . . . . . . . . . . . . . . . . . . . . 44

4.1.1 The Heart Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 The Pacemaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Event-B Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Action-Reaction Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Time-Based Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Overview of Pacemaker System Modelling . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Abstract model of Pacemaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Abstraction of AOO and VOO modes . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Abstraction of AAI and VVI modes . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 Abstraction of AAT and VVT modes . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 First refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Second refinement:Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Third refinement:Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Fourth refinement:Rate Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Model Validation using ProB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

43



Ce chapitre a été rédigé par Neera Singh et Dominique Méry.

4.1 Overview of Pacemaker System and Environment

In this modelling, the pacemaker system consider as an embedded system operating inside the heart for
controling the heart rate. First of all we review the basic elements of the heart environment that interact
with pacemaker and then described the elements of pacemaker system itself.

4.1.1 The Heart Environment

The human heart is wondrous in its ability to pump for the circulatory system continuously throughout a
lifetime. The heart’s mechanical system (the pump) requires at the very least impulses from the electrical
system. The heart consists of four compartments:the right and left atria and ventricles, which contract and
relax periodically under the control of natural electrical stimuli. The atria form one unit and the ventricles
another. The left ventricular free wall and the septum are much thicker than the right ventricular wall. This
is logical since the left ventricle pumps blood to the systemic circulation, where the pressure is consider-
ably higher than for the pulmonary circulation, which arises from right ventricular outflow. In the normal
functioning of natural pacemaker or heart, a discharge is made at the sinus node; the discharge subsequently
reaches the atrioventricular (AV) node which amplifies it, stimulating the ventricles. If the natural pace-
maker is malfunctioning, a physical condition termed Bradycardia may arise in which the heart rate falls
below the level expected for the patient [86]. To normalize the heart rate, an artificial pacemaker may be
implanted to help the heart. The bpm (beats per minute) is a basic unit to measure the rate of the heart
activity.

Heart or Natural Pacemaker

4.1.2 The Pacemaker

A pacemaker is an electronic device implanted in the body to regulate the heart beat. The pacmaker system
composed of :
Leads: One or more flexible coiled metal wire,normally two, that transmits electrical signals between the
heart and pacemaker. Each pacemaker lead is classified by whether it is configured with one (“unipolar”)
or two (“bipolar”) separate points of electrical contact within the heart.
The Pacemaker Generator: The pacemaker is both the power source and the brains of the pacing system.
As such, it contains a implanted batteries and controller as an electronic circuitry.
Device Controller-Monitor (DCM): An external unit that interacts with the pacemaker device using a
wireless connection.
Accelerometer: It is a specific unit inside the pacemaker for measuring body motion in order to allow
modulated pacing.

44



Table 4.1: Bradycardia operating modes of pacemaker system

Category Chambers Chabers Response to Rate Modulation
Paced Sensed Sensing

Letters O-None O-None O-None R-Rate Modulation
A-Atrium A-Atrium T-Triggered
V-Ventricle V-Ventricle I-Inhibited
D-Dual(A+V) D-Dual(A+V) D-Dual(T+I)

Artificial Pacemaker

In the single electrode pacemaker, the electrode attached with right atrium or right ventricle. In single
electrode pacemaker has several operational modes that control the malfunctions of the heart. The specifi-
cations document [68] described all possible operating modes for controling the different parameters of the
pacemaker. Most of the parameters related with real-time and action-reaction constraint for controling the
interval between a pace in the atrium and the ventricle or the number of pulses per minute the device should
deliver to a given chamber.
Pacemaker function is described by a universally accepted code consiststing of three or four characters. The
code provides for a description of pacemaker pacing and sensing function using a four-letter sequence. It
is the sequence, that is referred to as the “pacemaker mode”. In practice, only the first three or four-letter
positions are commonly used to describe bradycardia pacing function (i. e. , “AOO” or “VVIR”). The first
letter of code sequence of operating mode represents that chamber paced (“O” for none, “A” for atrium,
“V” for ventricle, “D” for both), second letter of code sequence of operating mode represents that chamber
sensed (“O” for none, “A” for atrium, “V” for ventricle, “D” for both), third letter of code sequence of
operating mode represents that response to sensing (“O” for none, “I” for inhibits pacing, “T” for triggers
pacing, “D” for both inhibits and triggers pacing) and final optional letter of code sequence of the operating
mode indicates the presence of rate modulation in response to the physical activity of the patient as measured
by the accelerometer. “X” is a wildcard used to denote any letter (i. e. “O”, “A”, “V” or “D”). Triggered
refers to pacing in the chamber paced after the sensing of intrinsic activity in the chamber sensed. The
sensing and pacing may occur in different chambers.

4.2 Event-B Patterns
The purpose of a design pattern is to capture structures and decisions within a design that are common to
similar modeling and analysis tasks. They can be re-applied when undertaking similar tasks to in order
reduce the duplication of effort. The pattern approach is the possibility to reuse solutions from former
developments in the current project, means a new refinement of the problem at hand where a certain part
of the model is replaced accordingly to a pattern that already exists. This will lead to a correct refinement
in the chain of models in the development, without arising proof obligations. Since the correctness of the
pattern has been proved during its development, nothing is to prove again when using this pattern [7].
Pacemaker systems are characterized by the fact that their behavior is defined in terms of action-reaction
and real time patterns. Sequences of inputs are recognized, and outputs can be emitted in response within

45



a fixed time interval. So, the most basic elements in pacemaker systems are action, reaction and bounded
time interval for every action, reaction and action-reaction pairs. The action-reaction within in a time limit
can be viewed as an abstraction of the pacemaker system. We recognized the following two design patterns
when modeling this kind of systems according to the relationship between the action and corresponding
reaction.

4.2.1 Action-Reaction Pattern
In the action-reaction pattern we have five type of design patterns as follows:-
Action and Weak Reaction: When an action is emitted, a reaction should start in response to the action. If
the action stops to stimulate sequentially, the reaction should also follow it to stop. However, the reaction
sometimes has not enough time to react, because the action moves too quickly. This is so-called action and
weak reaction.
Action and Strong Reaction:In some conditions, we hope that the every reaction should always follow
the every actions. The action and reaction can always keep proper synchronization then this behaviour of
action-reaction is known as pattern of action and strong reaction.
Composit Weak and Strong Reactions: Action and Reaction (weak or strong) are only the basic blocks

for modeling discrete event system. In most cases, system to be modeled has some complex situations to
handle, because functions of a large complex system depend on some sequences of events, in which some
events may be of action-reaction relation and some may occur simultaneously. The interaction between
two action-reaction blocks can be modeled as composite or synchronization, which depend on that the two
blocks are of weak-strong reactions or strong-strong reactions. When the weak reaction of a specific action-
reaction block results eventually in the specific strong reaction of some action-reaction, it can be recognized
as the composite for weak and strong reactions.
Weak synchronization of two strong reactions: As far as the synchronization of two strong action-
reaction blocks is concerned, two kinds of synchronizations could be identified, which can be recognized as
weak synchronization and strong synchronization. The second strong reaction can be set in on state when
the first strong reaction already in on state, but there is not any constraint for how many times the first strong
reaction is set to on state and what will be state of first strong reaction after the off state of second strong
reaction. This is what we called weak synchronization of two strong reactions.
Strong synchronization of two Strong reactions: Another kind of synchronization between two strong
action-reaction blocks is so-called strong synchronization of two strong reactions. In this pattern given the
solution of the problem with the weak synchronization of two strong reactions. The strong synchronization
between two strong action-reaction blocks really means that the second reaction will strictly run after the
first reaction , which reacts to the first action a and changes its value into on or off regularly.
Above action-reaction patterns are the refinements of weak action-reaction patterns [2].

Action-Reaction Patterns

4.2.2 Time-Based Pattern
The pacemaker system is highly based on time constraints pattern. All the action-reaction activities of
electrodes of pacemaker based on hard real-time constraint. The time constraints pattern introduced in
Event-B modelling by D. Cansell,D. Mery and Joris Rhem and successfully applied on IEEE 1394 case
study [70]. We have also applied same time patterns to solve the time constraints of pacemaker system. This
time pattern is fully based on timed automata. Timed automata are especially useful to model components
of real-time systems. A timed automaton is a finite state machine extended with clock variables which
evaluate to a nonnegative real number. The timed automata in a model and the way they interact with
each other together define a timed transition system. Besides ordinary action transitions that can represent
input, output and internal actions, a timed transition system has time passage transitions. Such time passage
transitions result in synchronous progress of all clock variables in the model. This makes it possible to base

46



decisions on the moment in time on which they are taken, which is done by so-called clock constraints. A
clock constraint depends on one or more clock values and can either be an invariant of a component state
(defining the time period(s) in which the component may reside in this state) or a guard on a transition
(defining under which time conditions this transition may be taken). Here we used the time pattern in
modelling to synchronize the sensing and pacing behaviours of pacemaker in continuous progressive time
constraint. All the events in the system guard with the time constraint means action of any event will be
activated only when time constraints will satisfy at specific time. The time progress is also an event, so there
is no modification of the underlying language of B. It is only a modelling technique instead of a specialised
formal system. The variable time is in N but time constraints can be written in terms involving unknown
constants or expressions between different times. Finally, the timed event observations can be constrained
by other events which determine future activations [70].

4.3 Overview of Pacemaker System Modelling
The pacemaker system is defined by a proof-based development of Event-B models which are modelling
techniques in a very abstract and general way. In this study, we try to model all the modes of single electrode
pacemaker system. We are applying the action-reaction and real-time patterns to model the single electrode
pacemaker system. Each mode of pacemaker has specific properties to control the rate of natural heart. In
order to understand the basic timing of a pacemaker one must understand the terminology commonly used
to describe the events that occur. All single chamber pacemakers have three basic timed events:-
Automatic Interval: The period of time between two sequential paced beats uninterrupted by a sensed
beat. It is also referred to as the base pacing interval and may be converted to bpm and expressed as the
base pacing rate.
Escape Interval: The period of time after a sensed event until the next paced event. The escape interval is
usually the same as the automatic interval. It may be different if a feature called “hysteresis” is enabled.
Refractory Period: This is a period of time after a paced or sensed event during which the pacemaker
sensing is disabled. An event occurring during a refractory period will not be sensed, or will be “tagged”
by the pacemaker as a refractory sensed event and used by the device for evaluation of possible abnormal
rhythms (e. g. , atrial fibrillation). The reason for having a refractory period in a ventricular pacemaker is
to prevent sensing of the evoked QRS and T-wave that occurs immediately after the paced event. In atrial
pacemakers the refractory period also prevents sensing of the far-field R-wave or T-wave. In some devices
the first part of the refractory period may be an adjustable “Blanking Period”, during which no sensing at
all occurs, followed by the remainder of the refractory period during which sensing occurs for diagnostic
purposes only [77, 84, 62].
To model the all modes of single electrode pacemaker, we try to find the patterns, relation between all
pacing modes and common pacing and sensing behaviours in all modes. We are applying the stepwise
refinements to model all modes. Here we will just present a sufficient overview of the abstract specification
and refinement stages in order to help the reader understand the basic notion of each refinement.
Abstract Model: In the abstract model of stepwise development of single electrode pacemaker contains
the definition and properties of different time interval parameters (URL (Upper Rate Limit), LRL (Lower
Rate Limit),. . . etc. ) and pacemaker actuator status (ON and OFF). The first model contains the
four basic events Pace ON , Pace OFF , tic and Set Pace Int, which are elementary events of single
chamber pacing modes(AOO,VOO). Two extra new events Pace OFF with Sensor and Sense ON in-
troduced in single chamber pacing modes(AAI,VVI). Similarly two more events Pace ON with Sensor
and Sense ON introduced in single chamber pacing modes(AAT,VVT). Remaining other modes of single
electrode pacemaker (AOOR, VOOR, AAIR,AATR,VVIR and VVTR) are refinement of basic single cham-
ber pacing modes, which are describing in following continuous refinements. In the basic abstract model
of pacemaker we introduced the action-reaction and real-time pattern for describing the pacing and sensing
mode of single electrode pacemaker.
First Refinement: In the first refinement of the model we introduced the only some extra invariants in the
abstract model to stable the system and make more strong for proper pacing and sensing at specific time
constraint.
Second Refinement: This refinement is relatively more complex then the last refinement in which we in-
troduced the threshold variable. A pacemaker has a stimulation threshold measuring unit which measures
a stimulation threshold voltage value of a heart and a pulse generator for deliverying stimulation pulses to

47



the heart. The pulse generator is controlled by a control unit to deliver the stimulation pulses with respec-
tive amplitudes related to the measured threshold value and a safety margin. The new event Thr value
introduced to take the value of threshold variable.
Third Refinement: In this refinement, we have introduced the concept of Hysteresis in pacing and sens-
ing mode of single electrode pacemaker. Hysteresis, from the Greek for ”to lag behind,” means a delay of
effect behind the cause. In pacemakers, this means delaying pacing to maximize patient benefit. The appli-
cation of a hysteresis interval to provide consistent pacing of the atrial or ventricle, or to prevent constant
pacing of the atrial or ventricle.

Refinement Structure of Pacemaker Operating Modes

Fourth Refinement: It is the final and last refinement of the single electrode pacemaker system. In this
refinements we introduced the rate adapting pacing technique to the pacemaker. This refinement of pace-
maker also give some new pacing and sensing mode (AAIR,VVIR,. . . etc. ) of the pacemaker. The rate
adapting mode of pacemaker can progressively pace faster than the lower rate, but no more than the upper
sensor rate limit, when it determines that heart rate needs to increase. This typically occurs with exercise in
patients that cannot increase their own heart rate. The amount of rate increase is determined by how much
exertion, the pacemaker thinks the patient is performing. This increased pacing rate is sometimes referred
to as the “sensor indicated rate”. When exertion has stopped the pacemaker will progressively decrease the
paced rate down to the lower rate.
Through careful use of small refinement steps and appropriate intermediate abstractions, we were able to
achieve an impressive degree of automatic proof. Here in this section we have also mentioned the table of
proof obligations for single electrode pacemaker.
All the proof obligations for all five levels were generated and proved using the RODIN proof tool. The
statistics from the mechanical proof effort for all of the refinement levels are outlined in Table-2. In the
table, the total number of POs column represents the total number of proof obligations generated for each
level. The Interactive Proof column represents the number of those proof obligations that had to be proved
interactively. Those proof obligations that were not proved interactively were proved completely automati-
cally by the prover.
The complete development of single electrode pacemaker resulted in 338(100%) proof obligations, in which
300(88%) were proved completely automatically by RODIN tool. The remaining 38(12%) proof obligations
were proved interactively using RODIN tool. This refinement approach together with the RODIN tool
supports an incremental style of system development. We have presented the complete refinements in top
down manner. We started with the highest level specification and then produced a model approximating
the lowest level. However in attempting to prove refinement between these models it was clear that the
abstraction gap was too large would have required a complex gluing invariant. Instead we decided that
some intermediate abstraction was required. Any modifications to the refinement model had an impact on
the existing proofs. For that we have need to give the proper gluing invariants.
As we can see from the Table-2 in refinement first we have proved 16 proofs obligations interactively out of
total no. of 62 proofs obligations. The most difficult proof was in first and third refinement of the abstract

48



Table 4.2: Proof obligations of all modes of single electrode pacemaker system

Model Total number Automatic Interactive
of POs Proof Proof

Abstract Model 118 112(95%) 4(5%)
First Refinement 60 44(73%) 16(27%)
Second Refinement 44 40(91%) 4(9%)
Third Refinement 36 24(66%) 12(34%)
Fourth Refinement 78 78(100%) 0(0%)
Total 336 298(89%) 38(11%)

model. Most of the interactive proof generated due to adding the new behaviour threshold and hysteresis
concepts into the single elctrode pacemaker system under hard real-time constraint. In the pacemaker
system strong action-reaction patterns apply with real-time constraints and we have proved successfully
the generated proof obligations in different situations of threshold, hysteresis and rate adapting pacing and
sensing in different operational modes.

4.4 Abstract model of Pacemaker
In the abstract model of single electrode pacemaker, we introduced the basic notions of action-reaction and
real-time constraint patterns. We already explained the different types of action-reaction patterns. Here, in
modelling of single electrode pacemaker we applied the strong action-reaction patterns in step wise refine-
ments in all modes. In this abstraction, we begin with an abstract model of a single electrode pacemaker
system focusing on pacing and sensing modes properties and operations control the pumping rate of natural
pacemaker or human heart. However, some pacing modes (AOOR,VOOR,AAIR,VVIR,AATR and VVTR)
are not distinguished in this level. Instead they are emerged to next refinement given in Section 10. Thus,
in this level, for every modes of pacemaker are treated in the same way as common basic modes, which are
essential for the single electrode pacemaker.
The model consists of several modules, each corresponding to an operating mode of the pacemaker but
some operating modes get through the refinements of model.

4.4.1 Abstraction of AOO and VOO modes
For modeling the AOO and VOO modes of single electrode pacemaker use the constant parameters as
axioms as follows:

axm1 : LRL ∈ 30 .. 175 ∧ LRL = 60
axm2 : URL ∈ 50 .. 175 ∧ URL = 120
axm3 : URL Time Int ∈ N1 ∧ URL Time Int = 60000/URL
axm4 : LRL Time Int ∈ N1 ∧ LRL Time Int = 60000/LRL

We introduced the constants LRL and URL that relate to the Lower Rate Limit (minimum number of pace
pulses delivered per minute) and Upper Rate Limit (How fast the pacemaker will allow the heart to be
paced). The numeric conversions are needed because the time unit is milliseconds. The two new constants
(URL Time Int) and (LRL Time Int) represent the corresponding URI (upper rate interval) and LRI
(lower rate interval) respectively. The interval unit is the “millisecond” (ms).
The variable (Pacemaker Actuator) enumerated types representing the presence or absence of a pulse
at single electrode pacemaker where electrode can be either do nothing or discharge a pulse on the atria
or ventricular. The next variable (sp) (since pace) is a natural number that represents counting timeline
between two consecutive pace and it is also the counter of clock which value is always less then and equal to
LRI. The variable (last sp) (last value of since pace or clock counter) represents the last counting timeline
between consecutive pace. The (Pace Int set) introduces as a flag variable to change the value of Pace
interval. The (Pace Int) variable is modify by the programmer in beginning and set the interval value for
two consecutive pace.

49



inv1 : Pacemaker Actuator ∈ status
inv2 : sp ∈ N
inv3 : sp ≤ LRL Time Int
inv4 : last sp ∈ N
inv5 : Pace Int set ∈ BOOL
inv6 : Pace Int ∈ URL Time Int .. LRL Time Int
inv7 : last sp ≥ URL Time Int ∧ last sp ≤ LRL Time Int
inv8 : Pace Int set = FALSE ∧ sp > 0 ∧ sp < Pace Int

⇒
Pacemaker Actuator = OFF

inv9 : Pace Int set = FALSE ∧ sp > Pace Int
⇒
Pacemaker Actuator = ON

The invariant (inv7) represents that the value of pace interval (Pace int) should be between upper rate
interval to lower rate interval. The next invariants (inv8 and inv9) represent the safety properties of sin-
gle electrode pacemaker and indicate that the pacemaker should pace only and only after pace interval.
Pacemaker actuator should be never activated in between the pace interval.
In the single electrode pacemaker the pacemaker either paced in atria or ventricular in the modes of AOO
and VOO respectively. The above described all axiom and constants are common for AOO and VOO modes.
We have introduced the new events and variables in forthcoming models as refinement in the incremental
development of the the single electrode pacemaker system. In abstract specification of the pacemaker modes
include events modeling, pacing into the heart within time constraints, stop the pacing into the heart within
time constraint and progressive increments in the clock cycle to control all the atomic events of pacemaker.
There are four significant events in our abstract model of AOO and VOO modes as follows:-
The event (Pace ON) represents the pacing operation of the single electrode pacemaker into the heart
either in atrial chamber using AOO mode or in ventricular chamber using VOO pacing mode. The guard
(grd1) states that the pacemaker actuator should be in OFF state and next guard (grd2) states that clock
counter (sp) should satisfy the condition sp ≥ Pace Int. When guard of event satisfy then action will take
the effect and pacemaker will discharge the pulse to the heart and assign the value of clock counter variable
(sp) to another last clock counting variable (last sp).

EVENT Pace ON
WHERE

grd1 : Pacemaker Actuator = OFF
grd2 : sp ≥ Pace Int

THEN
act1 : Pacemaker Actuator := ON
act2 : last sp := sp

END

The event Pace OFF used to stop the pulse discharging to the heart and set the value “1” to current clock
counter variable (sp). The guard (grd1 and grd2) of this event state that the pacemaker should be in “ON”
state and clock counter value should be grater then (Pace Int) variable.

EVENT Pace OFF
WHERE

grd1 : Pacemaker Actuator = ON
grd2 : sp + 1 > Pace Int

THEN
act1 : Pacemaker Actuator := OFF
act2 : sp := 1

END

50



The event (tic) is an important event which control the all other events of pacemaker. The guard (grd1)
states that the value of clock counter should be in between 1 to Pace Int. The action of this event progres-
sively increase the value of clock counter within time limit constraint.

EVENT tic
WHERE

grd1 : sp > 0 ∧ sp + 1 ≤ Pace Int
THEN

act1 : sp := sp + 1
END

The event Set Pace Int used as keep event in abstract model for choosing the value of (Pace Int) vari-
able. The value of variable Pace Int can be only changed when the flag variable Pace Int set will be
TRUE.

EVENT Set Pace Int
WHERE

grd1 : Pace Int set = TRUE
THEN

act1 : Pace Int
: |
(Pace Int′ ∈ URL Time Int .. LRL Time Int)

END

4.4.2 Abstraction of AAI and VVI modes
In the abstract model of AAI mode all the constants and variables are common as AOO mode. We intro-
duced a new constant ARP(Atrial Refractory Period) which represents a period during which pacemaker
timing in atrial will not be affected by events that occur with in(no sensing with initiation of a new Lower
Rate Interval). Similarly in the abstract model of VVI we introduced the new constants VRP (Ventricu-
lar Refractory Period) which represents a period during which pacemaker timing in ventricular will not be
affected by events that occur with in(no sensing with initiation of a new Lower Rate Interval). We added
two new variables (Pacemaker Sensor) and (last ss) in the abstract model of AAI and VVI mode. The
variable (Pacemaker Sensor) enumerated types representing the presence and absence of a pulse in sin-
gle electrode pacemaker, where electrode can be sense nothing or sense the pulse signal from the atria or
ventricular. The following constants and invariants are adding in AAI and VVI modes abstraction:-

axm1 : ARP ∈ 150 .. 500 ∧ARP = 250
axm2 : V RP ∈ 150 .. 500 ∧ V RP = 320
inv1 : Pacemaker Sensor ∈ status
inv2 : last ss ∈ N
inv3 : last ss ≥ ARP ∧ last ss ≤ LRL Time Int
inv4 : last ss ≥ V RP ∧ last ss ≤ LRL Time Int

In this abstract model the event (Pace ON) is similar to (Pace ON) event of AOO and VOO modes.
One new event (Pace OFF with Sensor) added in the abstraction of AAI or VVI modes and some new
guards and actions added in all other events of AOO and VOO modes. In the event (Pace OFF ) of AAI
and VVI modes we added the new guard (grd2) which states that pacemaker sensor should be in ON state
and action part states that the sensor will stop the sensing of the pulse from atria or ventricular.

EVENT Pace OFF
WHERE

⊕ grd3 : Pacemaker Sensor = ON
THEN

⊕ act2 : Pacemaker Sensor := OFF
END

51



The event (Pace OFF with Sensor) is a new event in this abstraction of AAI and VVI modes. The
guards (grd1, grd2 and grd3) state that when pacemaker actuator is OFF, pacemaker sensor is ON and
counter of clock is greater than ARP or VRP then the actions state that it store the value of clock counter
(sp), reset the clock counter and stop the pacemaker sensor for sensing of atria or ventricular. The LRI
consists of two portions, the ventricular refractory period (VRP), and the alert period. The VRP is initiated
at the start of the LRI with each sensed or paced event. It is a period during which pacemaker timing will
not be affected by events that occur within it. The alert period follows and is the interval during which
sensing can occur, inhibit pacing, and initiate a new LRI.

EVENT Pace OFF with Sensor
WHERE

grd1 : Pacemaker Actuator = OFF
grd2 : Pacemaker Sensor = ON
grd3 : sp ≥ ARP

THEN
act1 : last ss := sp
act2 : sp := 1
act3 : Pacemaker Sensor := OFF

END

In the abstract model of AAI and VVI modes only modify the guard of tic event. The action part of this
event is remain same as previous abstraction of AOO and VOO modes. The modified guard has been given
as follows:-

EVENT tic
WHERE

grd1 : (sp > 0 ∧ sp + 1 ≤ ARP )
∨
(sp + 1 > ARP ∧ sp + 1 ≤ Pace Int∧
Pacemaker Sensor = ON)

THEN
END

The event (Sense ON) is a new event of pacemaker AAI and VVI modes. This event used to start the
sensing process of pacemaker’s sensor on the basis time constraints. The guards of this event state that
pacemaker should be in OFF state and progessive clock counter (sp) should be greater than ARP inetrval
and less than pace interval. The action of this event states that pacemaker sensor will be in ON state when
all guards will satisfy.

EVENT Sense ON
WHERE

grd1 : Pacemaker Sensor = OFF
grd2 : sp ≥ ARP
grd3 sp < Pace Int

THEN
act1 : Pacemaker Sensor := ON

END

4.4.3 Abstraction of AAT and VVT modes
In the abstract model of AAT and VVT modes, all the constants and variables are similar to AAI and VVI
modes respectively. Similarly all the events of AAT and VVT modes same as AAI and VVI modes but
a new event (Pace ON with Sensor) used in place of (Pace OFF with Sensor) event. The guards
(grd1, grd2 and grd3) state that when pacemaker actuator is OFF, pacemaker sensor is ON and counter of

52



clock is grater than ARP or VRP then the actions state that it store the value of clock counter (sp) and start
the pacemaker sensor for sensing of atria or ventricular. This event triggers pacing in atria or ventricular
when sense the pulse from atria or ventricular chamber in alert period (LRI-VRP or LRI-ARP). The alert
period follows and is the interval during which sensing can occur, triggers pacing, and initiate a new LRI.

EVENT Pace OFF with Sensor
WHERE

grd1 : Pacemaker Actuator = OFF
grd2 : Pacemaker Sensor = ON
grd3 : sp ≥ ARP THEN
act1 : Pacemaker Sensor := ON
act2 : last ss := sp

END

4.5 First refinement
In the abstract model we have presented that single electrode pacemaker pacing and sensing in atomic step
in natural pacemaker or heart under real time constraints. So our goal is to model pacing and sensing of
pacemaker in correct manner. In the first refinement step, we introduce the more and more invariants in
different operating modes of pacemaker to apply the strong action-reaction and real-time patterns. In AOO
and VOO modes we have already add the strong invariants in abstarct model so we have not need to add
any extra invariants but we are adding new invariants in AAI and AAT modes as follows.

inv1 : sp > 0 ∧ sp < ARP ⇒ Pacemaker Sensor = OFF
inv2 : sp > ARP ∧ sp ≤ Pace Int⇒ Pacemaker Sensor = ON
inv3 : sp > 0 ∧ sp < ARP ⇒ Pacemaker Actuator = OFF

The modes of VVI and VVT is same as AAI and AAT modes respectively, there is difference between only
in atria refractory period and ventricular refractory period. In the VVI and VVT modes we have used the
same invariants which defined above, but we used the VRP in place of ARP in the invariants of VVI and
VVT modes. The invariant (inv1) states that the pacemaker sensor will never sense the value of pacemaker
pulse during the ARP or VRP time period. The invariant (inv2) states that the pacemaker sensor will be in
ON state or continuously sensing the value from heart chamber within an alert period (LRI-ARP or LRI-
VRP). The last invariant (inv3) states that pacemaker actuator also should be stop within the ARP or VRP
period. Hence there is no pacing and sensing activities by single electrode pacemaker within the atria or
ventricular refractory period. We have done the following changes in the guard of tic event and it controls
the progressive increment in the clock counter.

grd1 : (sp > 0 ∧ sp + 1 ≤ ARP ∧ sp + 1 ≤ Pace Int∧
Pacemaker Sensor = OFF ∧ Pacemaker Actuator = OFF )
∨
(sp ≥ ARP ∧ sp + 1 ≤ Pace Int∧
Pacemaker Sensor = ON ∧ Pacemaker Actuator = OFF )

4.6 Second refinement:Threshold
The basic requirements of the single electrode pacemaker system is pacing and sensing into the natural
pacemaker or heart in any particular chamber in atria or in ventricular. In the stepwise refinement of abstract
model we introduced the concept of sensing threshold value of the single electrode pacemaker. A pacemaker
has a stimulation threshold measuring unit which measures a stimulation threshold voltage value of a heart
and a pulse generator for deliverying stimulation pulses to the heart. The pulse generator is controlled by a
control unit to deliver the stimulation pulses with respective amplitudes related to the measured threshold
value and a safety margin. The constant THR hold the constant value of atria chamber as follows:-

53



axm1 : THR ∈ N1 ∧ THR = 75

The constant THR hold the value of ventricular chamber as follows:-

axm1 : THR ∈ N1 ∧ THR = 250

In the pacemaker sensor start to sensing after a particular time interval but the pacemaker actuator will take
effect when sensing threshold value of sensor will be greater then the standard threshold value. In this
refinement each time the pacemaker sensor sense the pulse signal either from atria or ventricular.
The following invariants are given for different modes of pacemaker. The invariant (inv1) states that pace-
maker actuator will be in OFF state when pacemaker sensor will sense the pulse value from the atria cham-
ber, the sensed value is larger then sensing threshold value, the value of since pace time counter (sp)
is greater than atria refractory period (ARP) and less than pacing interval and state of threshold value is
TRUE. The invariant (inv2) states that pacemaker actuator will be in OFF state when pacemaker sensor
will sense the pulse value from the ventricular chamber, the sensed value is larger then sensing threshold
value, the value of since pace time counter (sp) is greater than ventricular refractory period (VRP) and less
than pacing interval and state of threshold value is TRUE. The third invariant (inv3) states that pacemaker
actuator will be in ON state when pacemaker sensor will sense the pulse value from the atria chamber, the
sensed value is larger then sensing threshold value, the value of since pace time counter (sp) is greater
than atria refractory period (ARP) and less than pacing interval and state of threshold value is TRUE. Sim-
ilarly the last invariant (inv4) states that pacemaker actuator will be in ON state when pacemaker sensor
will sense the pulse value from the ventricular chamber, the sensed value is larger then sensing threshold
value, the value of since pace time counter (sp) is greater than ventricular refractory period (VRP) and less
than pacing interval and state of threshold value is TRUE. The threshold value of different chambers(atria
and ventricular) in different modes(AAI,VVI,AAT and VVT) are specified by the doctor after diagnose the
patient requirements.

inv1 : sp > ARP ∧ Pacemaker Sensor = ON ∧ thr ≥ THR∧
sp < Pace Int ∧ thr val state = TRUE
⇒
Pacemaker Actuator = OFF

inv2 : sp > V RP ∧ Pacemaker Sensor = ON ∧ thr ≥ THR∧
sp < Pace Int ∧ thr val state = TRUE
⇒
Pacemaker Actuator = OFF

inv3 : sp > ARP ∧ Pacemaker Sensor = ON ∧ thr ≥ THR∧
sp < Pace Int ∧ thr val state = TRUE
⇒
Pacemaker Actuator = ON

inv4 : sp > V RP ∧ Pacemaker Sensor = ON ∧ thr ≥ THR∧
sp < Pace Int ∧ thr val state = TRUE
⇒
Pacemaker Actuator = ON

The new variable (thr) introduced in this refinement and we have added this variable in different events of
last refinement. We have added the guard (grd4 : thr ≥ THR in events (Pace OFF with Sensor, Pace ON with Sensor)
and we have modified the guard of (tic) event as follows:-

grd1 : (sp > 0 ∧ sp + 1 ≤ ARP ∧ sp + 1 ≤ Pace Int∧
Pacemaker Sensor = OFF ∧ Pacemaker Actuator = OFF )
∨
(sp ≥ ARP ∧ sp + 1 ≤ Pace Int ∧ Pacemaker Sensor = ON∧
Pacemaker Actuator = OFF ∧ thr < THR ∧ thr val state = FALSE)

54



In the ventricular chamber we used the VRP constant in place of ARP constant in gaurd of (tic) event and
modified guard is same for all other events of different modes(AAI,VVI,AAT and VVT) of pacemaker. In
the refinement of event (Sense ON), we have added the new action as (thr val state := TRUE). This
action used to change the state of threshold variable as TRUE. The new event (Thr value) introduced in
all modes (AAI,VVI,VVI and VVT), which used to read the value of pacemaker sensor. The guards of
this event state that the pacmaker sensor should be in ON state and since pace time counter (sp) should be
greater than atria refractory period(ARP) or ventricular refractory period(VRP) and less than pace interval
(Pace Int) and state of threshold value (thr val state) should be in TRUE state. When all guards of this
event satisfy then the sensed value will assign to the threshold variable (thr) and set the threshold value
state (thr val state) as FALSE.

EVENT Thr value
ANY

th
WHERE

grd1 : Pacemaker Sensor = ON
grd2 : th ∈ N
grd3 : sp ≥ ARP ∨ sp ≥ V RP
grd4 : thr val state = TRUE
grd5 : sp < Pace Int

THEN
act1 : thr := th
act2 : thr val state := FALSE

END

4.7 Third refinement:Hysteresis
In the third refinement, we have introduced the concept of “Hysteresis′′ in pacing and sensing mode of
single electrode pacemaker. “Hysteresis”, from the Greek for ”to lag behind,” means a delay of effect
behind the cause. In pacemakers, this means delaying pacing to maximize patient benefit. The applica-
tion of a hysteresis interval to provide consistent pacing of the atrial or ventricle, or to prevent constant
pacing of the atrial or ventricle. An implantable pacemaker system is provided with a conditional hys-
teresis feature, whereby a hysteresis value is added to the pacing escape interval (Hyt Pace Int) only
when the prior spontaneous rate corresponded to a rate below the top of a predetermined hysteresis band.
This feature limits the lengthening of the escape interval (Hyt Pace Int) when there are sudden drops
in the natural rate thereby avoiding excessive changes in rate. In a preferred embodiment, the pacemaker
defines a hysteresis band around a given pacing rate, lower rate limit, the band having an upper hystere-
sis limit (URL Time Int) and a lower hysteresis limit (HRL Time Int). No hysteresis lengthening of
the escape interval is utilized for spontaneous heartbeats having rates above the upper hysteresis limit; for
spontaneous heartbeats having rates between the lower rate limit and the upper hysteresis limit, an escape
interval is set to have a value corresponding to a rate between the pacing limit and the lower rate limit of the
hysteresis band which is below the lower rate limit; and for a sensed spontaneous rate below the lower rate
limit, a hysteresis escape interval corresponding to the lower hysteresis limit is established. In the preferred
embodiment, sensed heartbeats having a prior rate between the lower rate limit and the upper hysteresis
limit cause an escape interval which is lengthened beyond the LRL escape interval by an amount which
varies linearly with the differential between the upper hysteresis rate limit and the spontaneous rate. We
introduced the new constants for modeling the Hysteresis concepts in the modes of pacemaker as follows:-

axm1 : HRL = LRL
axm2 : HRL Time Int = LRL Time Int
axm3 : Hyt Pace Int = HRL Time Int
axm4 : HY T State ∈ BOOL

In the above axioms, the items (axm2, axm3) introduced the constants for describing the hysteresis interval
limits and the last item (axm4) introduced the hysteresis state in this refinement. We introduced the three

55



invariants and one theorem in this refinement as follows:-

inv1 : HY T State = TRUE
⇒
last sp ≥ URL Time Int ∧ last sp ≤ HRL Time Int

inv2 : HY T State = TRUE
⇒
last ss ≥ ARP ∧ last ss ≤ HRL Time Int

inv3 : HY T State = TRUE
⇒
Pace Int = HRL Time Int

thm1 : HY T State = FALSE
⇒
Pace Int ≥ URL Time Int ∧ Pace Int ≤ HRL Time Int

The invariant (inv1) states that if hysteresis state is TRUE then interval between two pace should be in
hysteresis band (upper rate limit to lower rate limit). The next invariant (inv2) states that if hysteresis
state is TRUE then the interval between two sensed pulse should be greater than ARP and less then lower
hysteresis rate limit (HRL Time Int). The third invariant (inv3) states that if hysteresis state is TRUE
then pacing interval (Pace Int) and lower hysteresis rate limit (HRL Time Int) should be equal. The
theorem (thm1) states that if hysteresis state is FALSE then pacing inetrval should be greater than upper rate
limit time interval (URL Time Int) and less than hysteresis rate limit time interval (HRL Time Int).
In this refinement the invariants and theorem is same for all the modes(AAI and VVI) but in VVI modes we
applied the VRP in place of ARP in invariant (inv2). Many VVI and AAI modes of pacemakers have a rate
function called hysteresis. Positive hysteresis can add an additional period of time for the pacemaker
to wait and see if a native R wave will occur before pacing. In this application it can occur only after an
R wave is sensed and does not occur after a paced event. The hysteresis rate is less than the lower rate.
In this manner the principal purpose of hysteresis is to allow the patient to have his or her own underlying
rhythm as much as possible. This can help conserve the pacemaker’s battery life. Hysteresis concept is
not available in AAT and VVT modes of the pacemaker. But in the refinement we modeled the hysteresis
concept for AAT and VVT modes and it satisfy all the proof obligations which occured in this refinement.
We have checked it that there in no any effect in AAT and VVT modes of pacemaker when applied the
hysteresis. So hysteresis is only aplicable with AAI and VVI modes.
We have’t introduced any extra events in this refinement. We have added the hysteresis related constants and
variables in already defined events. We have added the following new guard (grd4) in event (Pace ON)
and (grd5) in events (Sense ON) and (Thr value). These guards represent that hysteresis states (ON
and OFF),hysteresis pacing inetrval and normal pace interval of the pacemaker parameters should be valid
at different operating modes of the pacemaker in pacemaker events.

grd4 : (HY T State = FALSE ∧ sp ≥ Pace Int)
∨
(HY T State = TRUE ∧ sp ≥ Hyt Pace Int)

grd5 : (HY T State = FALSE ∧ sp < Pace Int)
∨
(HY T State = TRUE ∧ sp < Hyt Pace Int)

We have also modified the old guard of event (tic) with the following new guard. This guard is necessary
for satisfy the time constraints for every operation of the pacemaker. The modified guard controls the time
counter in different operating modes of pacemaker. This modified guard is similar for AAI and VVI modes
but in VVI modes we have used the ventricular refractory period (VRP) in place of atria refractory period
(ARP).

56



grd1 : ((HY T State = FALSE ∧ sp > 0 ∧ sp + 1 ≤ ARP∧
sp + 1 ≤ Pace Int ∧ Pacemaker Sensor = OFF∧
Pacemaker Actuator = OFF )
∨
(HY T State = FALSE ∧ sp ≥ ARP ∧ sp + 1 ≤ Pace Int∧
Pacemaker Sensor = ON ∧ Pacemaker Actuator = OFF∧
thr < THR ∧ thr val state = FALSE))
∨
((HY T State = TRUE ∧ sp > 0 ∧ sp + 1 ≤ ARP∧
sp + 1 ≤ Hyt Pace Int ∧ Pacemaker Sensor = OFF∧
Pacemaker Actuator = OFF )
∨
(HY T State = TRUE ∧ sp ≥ ARP ∧ sp + 1 ≤ Hyt Pace Int∧
Pacemaker Sensor = ON ∧ Pacemaker Actuator = OFF∧
thr < THR ∧ thr val state = FALSE))

4.8 Fourth refinement:Rate Modulation
This refinement is the last and important refinement in the single electrode pacemaker system. In this
refinements we introduced the rate responsive technique to the pacemaker. Rate responsive term has led to
the more acceptable use of the terms rate adaptive and rate modulating. All these terms are used to describe
the capacity of a pacing system to respond to physiologic need by increasing and decreasing pacing rate.
The capability of a pacing system depends on the presence of one of a variety of physiologic sensors
that monitor need or indication for rate variability. The predominant need for rate modulation derives from
physical activity or exertion. There are other physiologic situations in which normally there are modulations
of heart rate for example, with fever and emotional stress. These, however, are substantially less important,
especially in the context of pacing systems. This refinement of pacemaker also give some new pacing and
sensing mode (AAIR,VVIR,AATR and VVTR) of the pacemaker. The rate adapting mode of pacemaker can
progressively pace faster than the lower rate, but no more than the upper sensor rate limit, when it determines
that heart rate needs to increase. This typically occurs with exercise in patients that cannot increase their
own heart rate. The amount of rate increase is determined by how much exertion the pacemaker thinks the
patient is performing. This increased pacing rate is sometimes referred to as the “sensor indicated rate”.
When exertion has stopped the pacemaker will progressively decrease the paced rate down to the lower rate.
For modeling the rate modulation technique in single electrode pacemaker, we introduced the some axioms
as follows:-

axm1 : MSR ∈ 50 .. 175 ∧MSR = 120
axm2 : threshold ∈ N1 ∧ threshold = 4
axm3 : reactionT ime ∈ 10 .. 50 ∧ reactionT ime = 10
axm4 : recoveryT ime ∈ 2 .. 16 ∧ recoveryT ime = 2
axm5 : responseFactor ∈ 1 .. 16 ∧ responseFactor = 8

In above axioms, (axm1) represents the maximum sensor rate (MSR) is maximum pacing rate allowed as
a result of sensor control and it should be in between 50 to 175 ppm(pulse per minute). We have taken the
nominal value of MSR in this model as 120 ppm. The next axiom (axm2) represents the activity threshold
is the value the accelerometer sensor output shall exceed before the pacemaker’s rate is affected by activity
data. The nominal value of activity threshold is 4 in this model. The accelerometer shall determine the rate
of increase of the pacing rate. The reaction time is the time required for an activity to drive the rate from
LRL to MSR, which is defined as axiom (axm3). Similarly axioms (axm4, axm5) represent the recovery
time and response factor in rate adapting pacing respectively. The recovery time shall be the time required
for the rate to fall from MSR to LRL when activity falls below the activity threshold and the response factor
in rate adapting pacing, the accelerometer shall determine the pacing rate that occurs at various levels of
steady state patient activity. The highest response factor setting (16) shall allow the greatest incremental
change in rate and the lowest response factor setting (1) shall allow a smaller change in rate. We have taken
the nominal value of reaction time, recovery time and response factor in our model.

57



We introduced the new variable (acler sensed) as acler sensed ∈ N, to store the sensed value from
the chamber using the pacemaker sensor. We have introduced the following invariants as follows in this
refinement:-

inv1 : acler sensed < threshold⇒ Pace Int = 60000/LRL
inv2 : acler sensed > threshold⇒ Pace Int = 60000/MSR

The invariant (inv1) states that when the sensed value of the accelerometer sensor is less than constant
activity threshold value then the pacing inetrval should be equal to 60000/LRL so that the heart rate never
fall below the lower rate limit (LRL) and similarly the invariant (inv2) states that when sensed value of
the accelerometer sensor is greater than constant activity threshold value then the pacing interval should
be equal to 60000/MSR, so that the heart rate never exceed the maximum sensor rate or upper rate limit
of the heart pacing. These two invariants always check the safety margin in rate adapting pacing. Finally
the simulation of the rate controller follows as a relation between the reach of the MSR with a exceeding
input value of the treshold, and the LRL as a decrease after the reacovery time form the MSR or the normal
functioning of the system.
In this final refinement we introduced only two extra events (Increase Interval, Decrease Interval)
to control the pacing rate of the single electrode pacemaker in rate adapting pacing modes. The new event
(Increase Interval) controls the value of pace interval whenever the sensed value of accelerometer sensor
is greater then activity threshold value. The other new event (Decrease Interval) controls the value of
pace interval whenever the sensed value of accelerometer sensor less then activity threshold value. After
introduced the these two new events in this refinement, we have found the new modes(AOOR, VOOR,
AAIR, VVIR, AATR and VVTR) in the single electrode pacemaker, which are using in the pacemaker as
a rate adaptive pacing features. All these modes apply to control the pacing activity of pacemaker. So here
we have found the relationship between different modes of pacemaker in stepwise refinements. Two new
events introduced in this refinement are essential for controlling the rate adapting pacing modes of the single
electrode pacemeker.

EVENT Increase Interval
ANY

WHERE
grd1 : acler sensed > threshold

THEN
act1 : Pace Int := 60000/MSR

END

EVENT Decrease Interval
ANY

WHERE
grd1 : acler sensed < threshold

THEN
act1 : Pace Int := 60000/LRL

END

We introduced the similar refinements in all other modes of the single electrode pacemaker for atria as well
as ventricular chambers. Rate modulated pacemakers mimic physiological response by increasing heart
rate and, subsequently, cardiac output in response to exercise. Rate modulated pacemaker use metabolic
or motion-derived sensors to adjust pacing rate based on physiologic requirements by translating indices
of increased metabolic need into signals that can be used to restore chronotropic competence. The most
common and versatile sensors include activity or acceleration, minute ventilation, or combinations; these
sensors remain functional with standard pacing leads. All sensor systems have some limitations. Although,
any rate response is better than none,the degree of rate response depends on programming. For a single
activity level, any sensor can be programmed to provide virtually any desired rate. Different sensors respond
differently to the same stimuli. Hence, combinations of complementary sensors may better simulate normal

58



sinus node response. Some devices automatically reprogram rate response parameters based on average
activity levels. Finaly we have modeled the all modes of single electrode pacemaker with all required
features of different modes of pacemaker system using stepwise refinements.

4.9 Model Validation using ProB
A systematic testing approach was used to validate the models derived during the staged development
process. “Validation” in this context refers to the activity of gaining confidence that the formal models
developed are consistent with the requirements expressed in the requirements document [68]. We have
used the ProB [89] validation tool to test the all scenarios of all modes of single electrode pacemaker. The
pacemaker specification was developed and formally proven by the Event-B. However, the development
contains certain assumptions about the actual single electrode pacemaker system which have to be validated
separately in order to ensure safe operation. We have used the ProB to dig all required information and
missing safety properties in the model. We have used the ProB to test all modes scenarios of the single elec-
trode pacemaker in different interesting situations such as the absence of input pulses, hysteresis, threshold
and rate adapting pacing. The validation process involves to sense the chamber and paced into the chamber
at the correct time in different situations such as hysteresis and rate adapting modes. We have successfully
tested the all cases of pacemaker modes after modeling in Event-B, using ProB validation tool.

4.10 Conclusion
The stepwise development of single electrode pacemaker system help us to discover the exact behaviour of
pacing and sensing activities. Our objective in the work reported here was to assess the feasibility of using
an incremental approach in the production of a useful model of a realistic real-time action-reaction system
as a pacemaker. The pacemaker case study suggests that such an approach can yield a viable model that
can be subjected to useful validation against system-level properties at an early stage in the development
process. We have applied the action-reaction pattern [2] and time based pattern [70] to developed the pace-
maker system modes. In our study of pacemaker system we have modeled the 12 modes of single electrode
pacemaker with different situations such as hysteresis and rate adaptive pacing. We have also discover
the relationship between different modes of the pacemaker in stepwise refinements Fig . The refinements
gradually introduce the various invariants of the system. The proof leads us to the discovery of the confir-
mation event to get the complete correctness, which was not the case of the I/O automata modelling. Our
approach has been very pragmatic, driven by the aim of providing a fully formal modelling approach with
a low barrier to industrial adoption. We have not yet dealt with the relationship between the incremental
addition of detail and formal refinement. We have outlined how an incremental refinement approach to the
single elctrode pacemaker system allowed us to achieve a very high degree of automatic proof. The pow-
erful support provided by the rodin tool was essential to achieving what we believe was a very successful
development. Rodin proof was used to generate the hundreds of proof obligations and to discharge those
obligations automatically and interactively. Without this level of automated support, making the changes
to the refinement chain that we did make would have been far too tedious. Our approach is the methodol-
ogy of separation of concerns: first prove the basic behaviour of singlr electrode pacemaker system at an
abstract level; then, and only then, gradually introduce the peculiarity of the specific properties. What is
important about our approach is that the fundamental properties we have proved at the beginning, namely
the reachability and the uniqueness of a solution, are kept through the refinement process (provided, of
course, the required proofs are done). We have validated the single electrode pacemaker system using the
ProB validation tool and find the correctness of our proved single electrode pacemaker system within the
real-time constraint.

59



60



Chapter 5

Formal Development of Two-Electrode
Cardiac Pacing System

Sommaire
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Basic Overview of Pacemaker system . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 The Heart System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 The Pacemaker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 The modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Modelling actions over states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Model refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Guidelines for EVENT B Modelling . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Formal Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 The Context and Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 First refinement:Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Second refinement:Rate Modulation . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Model Validation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

61



To build a high quality and zero defects medical devices and softwares is a crucial task. Formal model-
ing techniques help to achieve this target at certain level. Formal modeling of High-Confidence Medical
devices those are too much error prone in operating, are an International Grand Challenge in the area of
Verified Software. Formal modeling of an artificial pacemaker is also one of the proposed challenge. The
architecture and functional behaviour of the double electrode pacemaker is more complex than the single
electrode pacemaker. Proof-based an incremental approach, we use to develop the formal model of func-
tional behaviour of the double electrode pacemaker. The incremental proof-based development is mainly
driven by the refinement between an abstract model of the system and its detailed design through a series of
refinements, which adds parametric based functional properties to the abstract system-level specifications
using some intermediate models. The properties express system architecture and action-reaction under real-
time constraints. This technical report focuses on the formal development of the double electrode operating
modes and finds the common architecture of operating modes in tree form that helps to make the consistent
system. The EVENT B modeling language is used to express the double electrode pacemaker and generated
proof obligations are proved by RODIN platform. Finally, the pacemaker model has been validated by an
EVENT B animator; ProB tool.

62



5.1 Introduction
The high confidence medical devices are highly dependent on the performance, the need for absolute pre-
cision can be a life or death issue. So, after a long time due to many failure cases and untrustworthiness
of the medical devices, the equipment manufacturers have turned towards formalism in the engineering of
medical device. For decades, software failures have costed billions of dollars a year [92]. Software failures
and lack of warranties of products have emerged the software crisis. Due to software crisis, various formal-
ism and rigourous techniques (VDM, Z, Event-B, Alloy etc.) have been used in the development process of
safety-critical systems. These approaches provide the certain level of reliability and confidence to develop
the error free systems. Formal methods and their tools have achieved a certain level of usability that could
be applied even in industrial scale applications allowing software developers to provide more meaningful
guarantees to their projects.
The high confidence medical devices are too complex in operating and several concurrent process are run-
ning together. To validate such kind of system, only simulation and testing can be usual techniques. By
nature, testing can be applied only after a prototype implementation of the system has been realized. Formal
verification, as opposed to testing, works on models (rather than implementation) and amounts of mathe-
matical proofs provide correctness of a given system that can be realized the actual system in early stage of
development.
Tony Hoare suggested a Grand Challenges for Computing Research [79] to integrate the research commu-
nity to work together towards a common goal, agreed to be valuable and achievable by a team effort within a
predicted timescale. Verification Grand Challenges is one of them. From the Verification Grand Challenges,
many application areas were proposed by the Verified Software Initiative [78]. The pacemaker specifica-
tion [68, 75, 57] has been proposed by the software quality research laboratory at McMaster University as
a pilot project for the Verified Software Initiative [93, 85]. The challenge is characterised by system aspects
including hardware requirements and safety issues. Such a system demands high integrity to achieve safety
requirements.
In order to analyze the problem, we consider the triptych by D. Bjoerner [66],

where,
D,S → R
D = Healthcare domain
S = Model or chain of models of the

pacemaker system
R = Requirements of the pacemaker system

D is the context of the problem to solve and it is defined in EVENT B (parameters, constants etc.). S is the
system made up of the pacemaker and the heart. R is requirements for the heart system such that sensing
and demand pacing under time constraints. The operating modes of Bradycardia therapy and formal model
of pacemaker system are based on informal requirements, which are given by Boston Scientific [68].
H.D. Macedo, et al. [85] have developed a distributed real-time model of a cardiac pacing system but the
development was not based on proof and refinement techniques. Similarly, in other case study V.P. Manna,
et al. [87] have developed a simple pacemaker implementation. Recently, Gomes et al [76] wrote a formal
specification of the pacemaker system using the Z modelling language. According to the paper, they have
modelled the sequential model similar to H.D. Macedo et al. work [85]. In this report, we have specially
covered the bradycardia operating modes of the double electrode pacemaker. We have developed the para-
metric and functional based incremental development of bradicardia operating modes. Moreover, we have
added the threshold, and rate adaptive bradicardia operating modes. Incremental development is based on
refinement approach and at every level of the development, we have proved the all required safety properties
(refinement and consistency checking). Other specifications [85, 76] of the pacemaker developed as a one
shot model, means those are not based on the refinement.
Our approach is based on the EVENT B modelling language which is supported by the RODIN platform
integrating tools for proving models and refinements of models; moreover we use the ProB tool [89, 83]
for analyzing the models and for validating these models. Here we present a stepwise development to model
and verify such interdisciplinary requirements in EVENT B [69, 59]. The correctness of each step is proved
in order to achieve a reliable system. The pacemaker models must be validated to ensure that they meet the
requirements of the pacemaker. Hence, validation must be carried out by both formal modeling and domain

63



experts. The abstract model includes event modeling of bradycardia operating modes of a double electrode
pacemaker system.
The refinement is supported by the RODIN [90] platform guarantees the preservation of safety properties.
Thus, the behavior of the final system is preserved by an abstract model as well as in the correctly refined
models. Proof-based development methods [59] integrate formal proof techniques in the development of
software systems. The main idea is to start with an abstract model of the given system. Details are grad-
ually added to this first abstract model by building a sequence of more concrete events. The relationship
between two successive models in this sequence is refinement [59, 61]. The current work intends to explore
those problems related to the modeling of bradycardia operating modes using a double electrode pacemaker
system under real time constraints and to evaluate the refinement process.
The outline of the remaining report is as follows: Basic outline of a pacemaker and a heart system are given
in Section 2. The modelling framework is presented in Section 3. Section 4 explores the refinement based
formal development of the double electrode pacemaker. The pacemaker models are validated by the ProB
tool [89, 83] and correctness of the system are analyzed by generated proof obligations (see Table-3) in
Section 5. Finally, in Section 6, we conclude the report with some lessons learned from this experience and
some prospective along with direction for future work.

5.2 Basic Overview of Pacemaker system
In Fig. 1 a suitable interface block diagram of the pacemaker and the heart is given. The conventional
pacemakers serve two major functions, namely pacing and sensing. The pacemaker actuator is pacing by
the delivery of a short, intense electrical pulse into the heart. However the pacemaker sensor uses the same
electrode to detect the intrinsic activity of the heart. So, the pacemaker function of pacing and sensing
activities are dependent on the behavior of the heart. The sensing and pacing functions regulates the heart
rhythm. In this report, we present only the formal models of the double electrode pacemaker.

Fig. 1 Pacemaker and Heart Interface

The pacemaker system is a small electronic device that helps the heart to maintain the regular heart beat.
The pacemaker is implanted in the chest during surgery. Wires called leads are put into the heart muscle.
The device with the battery is placed under the skin, below the shoulder. In this study, the pacemaker is
treated as an embedded system operating in an environment containing the heart. We first review the heart
system that interact with the pacemaker (Section 2.1) and then consider elements of the pacemaker system
itself (Section 2.2).

5.2.1 The Heart System
The human heart is wondrous in its ability to pump blood to the circulatory system continuously throughout
a lifetime. The heart consists of four chambers: right atria, right ventricle, left atria and left ventricle, which
contract and relax periodically. Atria form one unit and ventricles form another. The heart’s mechanical
system (the pump) requires at the very least impulses from the electrical system. An electrical stimulus is
generated by the sinus node (see Fig. 2), which is a small mass of specialized tissue located in the right
atrium of the heart. This electrical stimulus travels down through the conduction pathways and causes the
heart’s lower chambers to contract and pump out blood. The right and left atria are stimulated first and
contract for a short period of time before the right and left ventricles. Each contraction of the ventricles
represents one heartbeat.The atria contract for a fraction of a second before the ventricles, so their blood
empties into the ventricles before the ventricles contract.

64



Fig. 2 Heart or Natural Pacemaker [56]

An artificial pacemaker is implanted to assist the natural pacemaker or heart in case of a arrhythmias con-
dition to control the heart rate [86]. Arrhythmias are due to cardiac problems producing abnormal heart
rhythms. In general arrhythmias reduce heamodynamic performance including situations where the heart’s
natural pacemaker develops an abnormal rate or rhythm or when normal conduction pathways are inter-
rupted and a different part of the heart takes over control of the rhythm. An arrhythmia can involve an
abnormal rhythm increase (tachycardia; > 100 bpm) or decrease (bradycardia; < 60 bpm), or may be char-
acterized by an irregular cardiac rhythm, e.g. due to asynchrony of the cardiac chambers. The irregularity
of the heartbeat, called bradycardia and techycardia. The bradycardia indicates that the heart rate falls be-
low the expected level while in techycardia indicates that the heart rate go above the expected level of the
heart rate. An artificial pacemaker can restore synchrony between the atria and ventricles. In an artificial
pacemaker system, the firmware controls the hardware such that an adequate heart rate is maintained, which
is necessary either because the heart’s natural pacemaker is insufficiently fast or slow or there is a block in
the heart’s electrical conduction system [62, 73, 77, 82, 84, 86]. Beats per minute (bpm) is a basic unit to
measure the rate of heart activity.

5.2.2 The Pacemaker system
The basic elements of the pacemaker system [62, 73] are:

1. Leads: One or more flexible coiled metal wire normally two, that transmits electrical signals be-
tween the heart and the pacemaker. Each pacemaker lead is classified by its configuration: either one
(“unipolar”) or two (“bipolar”) separated points of electrical contact with the heart.

2. The Pacemaker Generator: The pacemaker is both the power source and the brain of the pacing
and sensing systems. It contains an implanted battery and controller as an electronic circuitry.

3. Device Controller-Monitor (DCM) or Programmer: An external unit that interacts with the pace-
maker device using a wireless connection. It consists of a hardware platform and the pacemaker
application software.

4. Accelerometer: It is an electromechanical device inside the pacemaker that measures the body mo-
tion or acceleration of motion of a body in order to allow modulated pacing.

In the double electrode pacemaker, the electrode is attached to the right atrium or the right ventricle. It has
several operational modes that regulate the heart functioning. The specification document [68] describes all
possible operating modes that are controlled by the different programmable parameters of the pacemaker.
All the programmable parameters are related to real-time and action-reaction constraints, that is used to
regulate the heart rate.
In order to understand the “language” of pacing, it is necessary to comprehend the coding system that
produced by a combined working party of the North American Society of Pacing and Electrophysiology
(NASPE) and the British Pacing and Electrophysiology Group (BPEG) known as NBG(NASPE/BPEG

65



Category Chambers Chambers Response to Rate Modulation
Paced Sensed Sensing

Letters O-None O-None O-None R-Rate Modulation
A-Atrium A-Atrium T-Triggered
V-Ventricle V-Ventricle I-Inhibited
D-Dual(A+V) D-Dual(A+V) D-Dual(T+I)

Table-1 Bradycardia operating modes of pacemaker system

generic) code [88]. This is a code of five letters of which the first three are most often used. The code pro-
vides a description of the pacemaker pacing and sensing functions. The sequence is referred to as “brady-
cardia operating modes”(see Table-1). In practice, only the first three or four-letter positions are commonly
used to describe bradycardia pacing functions. The first letter of the code indicates which chambers are be-
ing paced, the second letter indicates which chambers are being sensed, the third letter of the code indicates
the response to sensing and the final letter, which is optional indicates the presence of rate modulation in
response to the physical activity measured by the accelerometer. Accelerometer is an additional sensor in
the pacemaker system that detects a physiological result of exercise or emotion and increase the pacemaker
rate on the basis of a programmable algorithms. “X” is a wildcard used to denote any letter (i.e. “O”, “A”,
“V” or “D”). Triggered (T ) refers to deliver a pacing stimulus and Inhibited (I) refers to an inhibition
from further pacing after sensing of an intrinsic activity from the heart chamber.The NBG code also uses a
fifth letter relating to antitachycardia function which is not discussed in this report.

5.3 The modelling framework
Here, we will summarize the concepts of the EVENT B modelling language developed by Abrial [69, 59]
and will indicate the links with the tool called RODIN [90]. The modelling process deals with various
languages, as seen by considering the triptych of Bjoerner [63, 64, 65, 67]: D,S −→ R. Here, the domain
D deals with properties, axioms, sets, constants, functions, relations, and theories. The system model S
expresses a model or a refinement-based chain of models of the system. Finally, R expresses requirements
for the system to be designed. Considering the EVENT B modelling language, we notice that the language
can express safety properties, which are either invariants or theorems in a machine corresponding to the
system. Recall that two main structures are available in EVENT B :

• Contexts express static information about the model.

• Machines express dynamic information about the model, invariants, safety properties, and events.

A EVENT B model is defining either a context or a machine. The triptych of Bjoerner [63, 64, 65, 67]
D,S −→ R is translated as follows: C,M −→ R, where C is a context, M is a machine and R are
the requirements. The relation −→ is defined to be a satisfaction relation with respect to an underlying
logico-mathematical theory. This satisfaction relation is supported by the RODIN platform. A machine
is organizing events modifying state variables and it uses static informations defined in a context. These
basic structure mechanisms are extended by the refinement mechanism which provides a mechanism for
relating an abstract model and a concrete model by adding new events or by adding new variables. This
mechanism allows us to develop gradually EVENT B models and to validate each decision step using the
proof tool. The refinement relationship should be expressed as follows: a model M is refined by a model P ,
when P is simulating M . The final concrete model is close to the behaviour of real system that is executing
events using real source code. We give details now on the definition of events, refinement and guidelines
for developing complex system models.

5.3.1 Modelling actions over states
The event-driven approach [58, 69, 59] is based on the B notation. It extends the methodological scope of
basic concepts to take into account the idea of formal models. Briefly, a formal model is characterized by a
(finite) list x of state variables possibly modified by a (finite) list of events, where an invariant I(x) states
properties that must always be satisfied by the variables x and maintained by the activation of the events.

66



In the following, we summarize the definitions and principles of formal models and explain how they can
be managed by tools [60, 71, 90].
Generalized substitutions are borrowed from the B notation. They provide a means to express changes to
state variable values. In its simple form x := E(x), a generalized substitution looks like an assignment
statement. In this construct, x denotes a vector built on the set of state variables of the model, and E(x)
denotes a vector of expressions. Here, however, the interpretation we shall give to this statement is not that
of an assignment statement. We interpret it as a logical simultaneous substitution of each variable of the
vector x by the corresponding expression of the vector E(x). There exists a more general normal form of
this, denoted by the construct x : |(P (x, x′)). This should be read as x is modified in such a way that the
value of x afterwards, denoted by x′, satisfies the predicate P (x, x′), where x′ denotes the new value of the
vector and x denotes its old value. This is clearly nondeterministic in general.
An event has two main parts, namely, a guard, which is a predicate built on the state variables, and an
action, which is a generalized substitution. An event can take one of three normal forms. The first form
(BEGIN x : |(P (x, x′) END) shows an event that is not guarded, being therefore always enabled and se-
mantically defined by P (x, x′). The second form (WHEN G(x) THEN x : |(Q(x, x′)) END) and third form
(ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END) are guarded by a guard that states the necessary
condition for these events to occur. The guard is represented by WHEN G(x) in the second form, and by
ANY t WHERE G(t, x) (for ∃ t · G(t, x)) in the third form. We note that the third form defines a possibly
nondeterministic event where t represents a vector of distinct local variables. The before–after predicate
BA(x, x′), associated with each of the three event types, describes the event as a logical predicate express-
ing the relationship linking the values of the state variables just before (x) and just after (x′) the execution
of event EVENT evt. The second and the third forms are semantically equivalent to G(x) ∧ Q(x, x′)
resp. ∃ t· (G(t, x) ∧ R(x, x′, t). Table-2 summarizes the three possible forms for writing a B event:
Proof obligations (INV 1 and INV 2) are produced by the RODIN tool [90] from events to state that an
invariant condition I(x) is preserved. Their general form follows immediately from the definition of the
before–after predicate BA(e)(x, x′) of each event e (see Table-2). Note that it follows from the two guarded
forms of the events that this obligation is trivially discharged when the guard of the event is false. Whenever
this is the case, the event is said to be disabled. The proof obligation FIS expresses the feasibility of the
event e with respect to the invariant I .

5.3.2 Model refinement
The refinement of a formal model allows us to enrich the model via a step-by-step approach and is the foun-
dation of our correct-by-construction approach [81]. Refinement provides a way to strengthen invariants
and to add details to a model. It is also used to transform an abstract model to a more concrete version by
modifying the state description. This is done by extending the list of state variables (possibly suppressing
some of them), by refining each abstract event to a corresponding concrete version, and by adding new
events. The abstract (x) and concrete (y) state variables are linked by means of a gluing invariant J(x, y).
A number of proof obligations ensure that (1) each abstract event is correctly refined by its corresponding
concrete version, (2) each new event refines skip, (3) no new event takes control for ever, and (4) relative
deadlock freedom is preserved. Details of the formulation of these proofs follows.
We suppose that an abstract model AM with variables x and invariant I(x) is refined by a concrete model
CM with variables y and gluing invariant J(x, y). If BA(e)(x, x′) and BA(f)(y, y′) are respectively the
abstract and concrete before–after predicates of the same event, e and f respectively, we have to prove the
following statement, corresponding to proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(f)(y, y′) must refine skip (x′ = x), generating the following
simple statement to prove (2).

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′)

In refining a model, an existing event can be refined by strengthening the guard and/or the before–after
predicate (effectively reducing the degree of nondeterminism), or a new event can be added to refine the

67



Event e Before-after Predicate
BA(e)(x,x’)

BEGIN
x : |(P (x, x′))

END
P (x, x′)

WHEN
G(x)

THEN
x : |(Q(x, x′))

END

G(x) ∧ Q(x, x′)

ANY
t

WHERE
G(t, x)

THEN
x : |(R(x, x′, t))

END

∃ t· ( G(t, x) ∧ R(x, x′, t) )

PROOF OBLIGATIONS

• (INV1) Init(x) ⇒ I(x)

• (INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)

• (FIS) I(x) ∧ grd(e)(x) ⇒ ∃y.BA(e)(x, y)

Table-2 EVENT B events and proof obligations

68



skip event. The feasibility condition is crucial to avoiding possible states that have no successor, such as
division by zero. Furthermore, this refinement guarantees that the set of traces of the refined model contains
(up to stuttering) the traces of the resulting model. The refinement of an event e by an event f means that
the event f simulates the event e.
The EVENT B modelling language is supported by the RODIN platform [90] and has been introduced in
publications [59, 69], where there are many case studies and discussions about the language itself and the
foundations of the EVENT B approach. The language of generalized substitutions is very rich, enabling
the expression of any relation between states in a set-theoretical context. The expressive power of the
language leads to a requirement for help in writing relational specifications, which is why we should provide
guidelines for assisting the development of EVENT B models.

5.3.3 Guidelines for EVENT B Modelling

Considering design patterns [74], the purpose is to capture structures and to make decisions within a design
that are common to similar modeling and analysis tasks. They can be re-applied when undertaking similar
tasks in order to reduce the duplication of effort. The design pattern approach is the possibility to reuse
solutions from earlier developments in the current project. This will lead to a correct refinement in the chain
of models, without producing proof obligations. Since the correctness (i.e proof obligations are proved) of
the pattern has been proved during its development, nothing is to be proved again when using this pattern.
The pacemaker systems are characterized by their functions, which can be expressed by analyzing action-
reaction and real time patterns. Sequences of inputs are recognized, and outputs can be emitted in response
within a fixed time interval. So, the most common elements in pacemaker system are bounded time interval
for every action, reaction and action-reaction pair. The action-reaction within a time limit can be viewed as
an abstraction of the pacemaker system. We recognize the following two design patterns when modeling
this kind of system according to the relationship between the action and corresponding reaction.
Under action-reaction chapter [59] two basic types of design patterns are,
Action and Weak Reaction: Once an action emits, a reaction should start in response. For a quick instance,
if an action stops, the reaction should follow. Sometimes reaction does not change immediately according
to the action because the action moves too quickly (the continuance of an action is too short, or the interval
between actions is too short). This is known as pattern of action and weak reaction.
Action and Strong Reaction: For every action, there is a corresponding reaction. To keep proper synchro-
nization between action and corresponding reaction, known as pattern of action and strong reaction.

Fig. 3 Action-Reaction Patterns

The action-reaction events of a pacemaker system are based on the time constraint pattern in IEEE 1394
proposed by Cansell et. al and on the 2-Slots Simpson Algorithm case studies [70, 91]. This time pattern
is fully based on timed automaton. The timed automaton is a finite state machine that is useful to model
components of real-time systems. In a model, timed automata interacts with each other and defines a
timed transition system. Besides ordinary action transitions that can represent input, output and internal
actions. A timed transition system has time progress transitions. Such time progress transitions result in
synchronous progress of all clock variables in the model. Here we apply the time pattern in modeling to
synchronize the sensing and pacing stimulus functions of the pacemaker system in continuous progressive
time constraint. In the model, events are controled under time constraints, which means action of any
event activates only when time constraint satisfies on specific time. The time progress is also an event, so
there is no modification of the underlying EVENT B language. It is only a modeling technique instead of
a specialized formal system. The timed variable is in N (natural numbers) but time constraint can be
written in terms involving unknown constants or expressions between different times. Finally, the timed
event observations can be constrained by other events which determine future activations.

69



Fig. 4 Refinement structure of the double electrode
pacemaker operating modes

5.4 Formal Development
The two electrode pacemaker system is more complex than one electrode pacemaker system. We have de-
signed the block diagram (see Fig. 4) of hierarchical tree structure of the possible operating modes of the
double electrode pacemaker. The hierarchical tree structure shows the stepwise refinement from abstract to
concrete model. Each level of refinement introduces the new features of pacemaker as functional and para-
metric requirements. The root of this tree indicates the double electrode pacemaker. In a double electrode
pacemaker, two electrodes are placed in both chambers; atrium and ventricular. These atrium and ventricu-
lar are the right atrium and ventricular. The next five branches of tree show the five opearting modes; DOO,
DVI, DDI, VDD, and DDD (see Table-1). In thses operating modes, the pacemaker uses the both electrodes
to pace in both chambers synchronously. It is an abstract level of the model. In the abstract model, we
introduce all the operating modes abstractly with required properties of the pacemaker. From first refine-
ment to last refinement, there is only one branch in every operating modes of the atrium and the ventricular
chambers. The subsequent refinement models introduce all detailed information for the resulting system.
Every refinement level shows an extension of previous operating modes as an introduction of a new feature
or functional requirement. the triple dots (...) represents that there is no refinement at that level in particular
operating mode (DOO). In abstract level and first refinement level, we have similar operating modes. But
in the second refinement level, we have achieved the additional rate adaptive operating modes(i.e.DOOR,
DVIR, DDIR, VDDR and DDDR). These operating modes are different from the previous levels operat-
ing modes. These refinement structure is very helpful to model the functional requirements of the double
electrode cardiac pacemaker. The following outline is given about every refinement level to understand the
basic notion of the cardiac pacemaker model:-

• Abstract Model : Specifies the pacing, sensing and timing components with the help of action-
reaction and real-time pattern using some initial events (Actuator ON A, Actuator OFF A, Actuator ON V ,
Actuator OFF V ,
Sensor ON A, Sensor OFF A, Sensor ON V , Sensor OFF V , tic, tic AV ).

• Refinement 1 : Introduces the threshold parameter to filter the exact sensing value within a sensing
period to control the sensing and the pacing event and introduces more invariants to satisfy the pacing
and sensing requirements of the system in both chambers.

• Refinement 2 : Introduces the accelerometer sensor component and rate modulation function to
achieve the new rate adaptive operating modes of the pacemaker.

We have presented here only selected parts of our formalization and omit proof details.

5.4.1 The Context and Initial Model
In this section we describe the formal development of initial modes of double electrode cardiac pacemaker
system. In the abstract model, we introduce the basic notions of action-reaction and real-time constraints
using actuator and sensor in different heart chambers. In this abstraction, we begin with an abstract model

70



of a double electrode cardiac pacemaker system focusing on pacing and sensing modes properties and
operations control the pumping rate of natural pacemaker or human heart. However, some pacing modes
related to rate modulation are not described in this level. Instead they will emerged into final refinement.
Thus, in this level, for every modes of pacemaker are treated in the same way as common basic modes,
which are essential for the double electrode cardiac pacemaker. The model consists of several modules,
each corresponding to an operating mode of the pacemaker. Here, we define the required context and then
abstraction of the double electrode cardiac pacemaker system.
We begin by defining the Event-B context. The context uses the sets and constants to define the axioms
and theorems. The axioms and theorems represent the logical formulation of the system. The logical
formulation is the constant behaviour and the set of properties of the system. In the context, we define
the constants LRL and URL that relate to the lower rate limit (LRL) (minimum number of pace pulses
delivered per minute by pacemaker) and upper rate limit (URL) (how fast the pacemaker will allow the
heart to be paced). These constants are extracted from the pacemaker specification document [68]. The
lower rate limit (LRL) must be between 30 and 175 pulse per minute (ppm) and upper rate limit (URL)
must be between 50 and 175 pulse per minute (ppm). To test the model by ProB model checker [89], we
have taken a nominal value of lower rate limit (LRL) as 60 ppm and upper rate limit (URL) as 120 ppm
according the pacemaker specification document [68].
The two new constants URI (upper rate interval) and LRI (lower rate interval) are defined by axioms
(axm3 and axm4). The pacemaker (or pacing) rate is programmed in milliseconds. To convert a heart rate
from beats per minute (bpm) to milliseconds, divide 60,000 by the heart rate. For example, a heart rate
of 70 bpm equals 857 milliseconds. Additionaly, we define an enumerated set status of an electrode as
ON and OFF states and new constant atrioventricular interval FixedAV in axm5 and axm6, respectively.
Refractory period constants Atria Refractory Period ARP , Ventricular Refractory Period V RP and Post
Ventricular Atria Refractory Period PV ARP are defined in axm7,axm8 and axm9, respectively. Another
new constant V Blank is defined as blanking period as initial period of VRP. Finally, we have introduced
some basic initial properties between defined constants of the system by axioms(axm11, axm12, , axm13,
axm14 and axm15).

axm1 : LRL ∈ 30 .. 175
axm2 : URL ∈ 50 .. 175
axm3 : URI ∈ N1 ∧ URI = 60000/URL
axm4 : LRI ∈ N1 ∧ LRI = 60000/LRL
axm5 : status = {ON,OFF}
axm6 : FixedAV ∈ 70 .. 300
axm7 : ARP ∈ 150 .. 500
axm8 : V RP ∈ 150 .. 500
axm9 : PV ARP ∈ 150 .. 500
axm10 : V Blank ∈ 30 .. 60
axm11 : LRL < URL
axm12 : URI < LRI
axm13 : URI > PV ARP
axm14 : URI > V RP
axm15 : V RP ≥ PV ARP

Abstraction of DOO mode:

In the double electrode pacemaker system, the pacemaker delivers a pacing stimulus in the atrial and ven-
tricular chambers. In DOO operating mode of double electrode cardiac pacemaker system, the first letter
’D’ represents that the pacemaker paces both atrial and ventricle, second letter ’O’ represents that the pace-
maker does not sense the atrial and the ventricle chambers and final letter ’O’ represents that there is no any
inhibits or triggers in both chambers (atrail and ventricular). In the block diagram (Fig-5) of heart pacing
in DOO operating mode pacemaker will pace both chambers (atrial and ventricular) asynchronously at the
constant rate regardless of the underlying rhythm. It does not sense, If the native rhythm is slower than the
constant rate then atrial and ventricular capture will most likely be seen at the constant rate.

71



Fig. 5 Basic block diagram of ECG rhythm strip in DOO Operating Mode

In our initial model, we have formalized the functional behaviors of the cardiac pacemaker system , where
two new variables PM Actuator A and PM Actuator V are represented ON or OFF states of the pace-
maker’s actuators for pacing in the atrial and ventricular chambers. An interval between two paces is defined
by a new variable Pace Int that must be between upper rate interval (URI) and lower rate interval (LRI), is
represented by an invariant (inv3). The variable Pace Int is an interval between two paces of ventricular
chamber that is initialized by the system before start the pacing. This interval is equal to atrioventricu-
lar(AV) interval plus ventriculoatrial(VA) interval. A variable sp (since pace) represents a current clock
counter. A variable last sp represents the last interval (in ms.) between two paces and a safety property in
invariant (inv5) states that last interval must be between URI and LRI . In invariant (inv6) a new variable
Atria state is used as boolean type to control the state of the atrial chamber. The invariant (inv7) states
that the pacemaker’s actuator of atrial and ventricular chambers are OFF when clock counter sp is less
than ventriculoatrial (VA) interval and atrial state (Atria state) is FALSE. The next invariant (inv8)
represents that the pacemaker’s actuator of both chambers are OFF when clock counter sp is greater than
atrioventricular (AV) interval and atrial state (Atria state) is TRUE. The last invariants (inv9 and inv10)
state that pacemaker’s actuator of atrial is ON when clock counter sp is equal to ventriculoatrial (VA) inter-
val Pace Int − FixedAV and pacemaker’s actuator of ventricular is ON when clock counter sp is equal
to the pace interval Pace Int, respectively.

inv1 : PM Actuator A ∈ status
inv2 : PM Actuator V ∈ status
inv3 : Pace Int ∈ URI .. LRI
inv4 : sp ∈ 1 .. Pace Int
inv5 : last sp ≥ URI ∧ last sp ≤ LRI
inv6 : Atria state ∈ BOOL
inv7 : sp < (Pace Int− FixedAV ) ∧Atria state = FALSE

⇒
PM Actuator V = OFF ∧ PM Actuator A = OFF

inv8 : sp > (Pace Int− FixedAV ) ∧ sp < Pace Int ∧
Atria state = TRUE ⇒
PM Actuator A = OFF ∧ PM Actuator V = OFF

inv9 : PM Actuator A = ON
⇒
sp = Pace Int− FixedAV

inv10 : PM Actuator V = ON ⇒ sp = Pace Int

In the abstract specification of DOO operating mode, there are five events Pace ON A to start pacing in
atrial, Pace OFF A to stop pacing in atrial, Pace ON V to start pacing in ventricular, Pace OFF V to
stop pacing in ventricular and tic to increment the current clock counter sp under real time constraints.

72



EVENT Pace ON A
WHEN

grd1 : PM Actuator A = OFF
grd2 : Atria state = FALSE
grd3 : sp = Pace Int− FixedAV

THEN
act1 : PM Actuator A := ON

END

The events Pace ON A and Pace OFF A start and stop the pulse discharging into the atrial chamber.
The guards and an action of event (Pace ON A) state that pacemaker’s actuator (PM Actuator A) of
atrial is ON when pacemaker’s actuator (PM Actuator A) of atrial is OFF, atrial state (Atria state) is
FALSE and clock counter sp is equal to ventriculoatrial (VA) interval (Pace Int− FixedAV ).

EVENT Pace OFF A
WHEN

grd1 : PM Actuator A = ON
grd2 : PM Actuator V = OFF
grd3 : sp = Pace Int− FixedAV

THEN
act1 : PM Actuator A := OFF
act2 : Atria state := TRUE

END

The guards and actions of event (Pace OFF A) state that pacemaker’s actuator (PM Actuator A) of
atrial chamber is OFF and atrial state (Atria state) is TRUE, when pacemaker’s actuator (PM Actuator A)
of atrial is ON, pacemaker’s actuator (PM Actuator V ) of ventricular is OFF and clock counter sp is equal
to ventriculoatrial (VA) interval (Pace Int− FixedAV ).

EVENT Pace ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : PM Actuator A = OFF
grd3 : sp = Pace Int

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

The events Pace ON V and Pace OFF V also synchronize start and stop the pulse discharging into
the ventricular chamber. The guards and actions of event (Pace ON V ) state that pacemaker’s actuator
(PM Actuator V ) of ventricular is ON and clock counter sp assigns to a variable (last sp) when pace-
maker’s actuator of both chambers (PM Actuator A, PM Actuator V ) is OFF and and clock counter
sp is equal to the pace interval (Pace Int).

73



EVENT Pace OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : PM Actuator A = OFF
grd3 : Atria state = TRUE
grd4 : sp = Pace Int

THEN
act1 : PM Actuator V := OFF
act2 : sp := 1
act3 : Atria state := FALSE

END

The guards and actions of event (Pace OFF V ) state that pacemaker’s actuator (PM Actuator V ) of
ventricular is OFF, clock counter sp resets to 1 and atrial state (Atria state) sets into TRUE state when
pacemaker’s actuator (PM Actuator V ) of ventricular is ON, pacemaker’s actuator (PM Actuator A)
of atrial is OFF, atrial state (Atria state) is TRUE and clock counter sp is equal to the pace interval
(Pace Int).

EVENT tic
WHEN

grd1 : (sp < (Pace Int− FixedAV ))
∨
(sp ≥ (Pace Int− FixedAV ) ∧ sp < Pace Int∧
Atria state = TRUE ∧ PM Actuator V = OFF
∧PM Actuator A = OFF )

THEN
act1 : sp := sp + 1

END

The last event tic of this abstraction progressively increases the current clock counter sp under pre-defined
pace interval (Pace Int). The guard of this event controls the pacing stimulus into the heart chambers
(atrial and ventricular) and synchronizes ON and OFF states of pacemaker’s actuator of each chamber (atrial
and ventricular) under real time constraints. The guards of this event provides the required conditions to
increase the current clock counter sp by 1 (ms.).

Abstraction of DVI mode:

In DVI operating mode of double electrode cardiac pacemaker system, the first letter ’D’ represents that
the pacemaker paces both atrial and ventricle, second letter ’V’ represents that the pacemaker senses the
ventricle only and final letter ’I’ represents that the ventricular sensing inhibits atrial and ventricular pacing.
In the block diagram (Fig-6) of heart pacing in DVI operating mode a ventriculoatrial (VA) interval follows
the timing for each atrioventricular (AV) interval and an atrioventricular (AV) interval follows the timing for
each ventriculoatrial (VA) interval, except with an R wave sensed during the ventriculoatrial (VA) interval
that starts timing of a new ventriculoatrial (VA) interval.

74



Fig. 6 Basic block diagram of ECG rhythm strip in DVI Operating Mode

In the abstract model of DVI mode, two new variables (PM Actuator A) and (PM Actuator V ) rep-
resent the presence (ON) or absence (OFF) of pulse in atrial and ventricular chambers, respectively. The
variable (PM Sensor V ) also represents the presence (ON) or absence (OFF) of pacemaker’s sensor in
ventricular chamber. An interval between two paces is defined by a new variable Pace Int that must be
between upper rate interval (URI) and lower rate interval (LRI), is represented by an invariant (inv3). The
variable Pace Int is an interval between two paces of ventricular chamber that is initialized by the system
before start the pacing. This interval is equal to atrioventricular(AV) interval plus ventriculoatrial(VA) in-
terval. A variable sp (since pace) represents the current clock counter. A variable last sp represents the
last interval (in ms.) between two paces and a safety property in invariant (inv6) states that last interval
must be greater than or equal to V RP and less than and equal to LRI . In invariant (inv7) a new variable
AV Count STATE is used as boolean type to control the counting interval of atrioventricular (AV) in-
terval. The variable (AV Count) define as natural number to count the atrioventricular (AV) interval. A
invariant (inv9) represents that the safety property and states that during the ventricular refractory period
(VRP), pacemaker’s actuator (PM Actuator A, PM Actuator V ) of atrial and ventricular chambers are
OFF and pacemaker’s sensor (PM Sensor V ) of ventricular chamber is also OFF. The last invariants
(inv10 and inv11) state that pacemaker’s actuator of atria is ON when clock counter sp is greater than or
equal to ventriculoatrial (VA) interval Pace Int − FixedAV and pacemaker’s actuator of ventricular is
ON when clock counter sp is equal to the pace interval Pace Int, respectively.

inv1 : PM Actuator A ∈ status
inv2 : PM Actuator V ∈ status
inv3 : PM Sensor V ∈ status
inv4 : Pace Int ∈ URI .. LRI
inv5 : sp ∈ 1 .. Pace Int
inv6 : last sp ≥ V RP ∧ last sp ≤ LRI
inv7 : AV Count STATE ∈ BOOL
inv8 : AV Count ∈ N
inv9 : sp < V RP ⇒ PM Actuator A = OFF∧

PM Actuator V = OFF ∧ PM Sensor V = OFF
inv10 : PM Actuator A = ON⇒

sp ≥ Pace Int− FixedAV
inv11 : PM Actuator V = ON ⇒ sp = Pace Int

In the abstract specification of DV I operating mode, there are eight events Actuator ON A to start pac-
ing in atria, Actuator OFF A to stop pacing in atria, Actuator ON V to start pacing in ventricular,
Actuator OFF V to stop pacing in ventricular, Sensor ON V to star sensing in ventricular, Sensor OFF V
to stop sensing in ventricular, tic to increment the current clock counter sp under real time constraints and
tic AV to count the atrioventricular (AV) interval.

75



EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)
grd3 : sp ≥ V RP

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

The events Actuator ON V and Actuator OFF V start and stop the pacemaker’s actuator in ventricular
chamber and synchronizes ON and OFF states. The guards of event Actuator ON V represent that when
pacemaker’s actuator (PM Actuator V ) of ventricular is OFF, current clock counter sp is equal to pace
interval (Pace Int) and greater than or equal to VRP. The actions represent that if all guards are satisfy
then the pacemaker’s actuator (PM Actuator V ) of ventricular is ON and clock counter sp assigns to a
new variable (last sp).

EVENT Actuator OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : (sp = Pace Int)
grd3 : AV Count ≥ FixedAV

THEN
act1 : PM Actuator V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : PM Sensor V := OFF
act5 : sp := 1
act6 : PM Actuator A := OFF

END

The guards of event Actuator OFF V states that pacemaker’s actuator (PM Actuator V ) of ventric-
ular is ON and clock counter sp is equal to pace interval (Pace Int) and atrioventricular (AV) counter
(AV Count) is greater than or equal to atrioventricular (AV) interval (FixedAV ). The actions of this
event reset all the required parameters of cardiac pacemaker system. The actions (act1−act6) of this event
state that the pacemaker’s actuator (PM Actuator V ) of ventricular sets in OFF state, assigns the value of
variable (AV count) as 0, atrioventricular (AV) counter state (AV Count STATE) sets in FALSE state,
pacemaker’s sensor (PM Sensor V ) of ventricular sets in OFF state, assigns the value of clock counter
sp as 1 and sets in OFF state of pacemaker’s actuator (PM Actuator A) of atrial.

EVENT Actuator ON A
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp < Pace Int
grd3 : PM Actuator A = OFF
grd4 : AV Count STATE = FALSE

THEN
act1 : PM Actuator A := ON
act2 : PM Sensor V := OFF

END

The actions (act1, act2) of event (Actuator ON A) state that the pacemaker’s actuator (PM Actuator A)
of atria sets in ON state and pacemaker’s sensor (PM Sensor V ) of ventricular sets in OFF state when all
guards satisfy. The first guard of this event states that pacemaker’s sensor (PM Sensor V ) of ventricular

76



is ON, the next guard (grd2) states that clock counter sp is greater than or equal to ventriculoatrial (VA)
interval, VRP and less than pace interval (Pace Int)), the third guard shows that the pacemaker’s actuator
(PM Actuator A) of atrial is OFF and and in last guard states that atrioventricular (AV) counter state
(AV Count STATE) is FALSE.

EVENT Actuator OFF A
WHEN

grd1 : PM Actuator A = ON
grd2 : sp ≥ Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp < Pace Int
grd3 : AV Count STATE = FALSE

THEN
act1 : PM Actuator A := OFF
act2 : AV Count STATE := TRUE

END

The actions (act1, act2) of event (Actuator OFF A) state that pacemaker’s actuator (PM Actuator A)
of atria is OFF and atrioventricular (AV) counter state (AV Count STATE) is TRUE. The guards (grd1−
grd2) of this event state that pacemaker’s actuator (PM Actuator A) of atria is ON, clock counter sp is
greater than or equal to ventriculoatrial (VA) interval, VRP and less than pace interval (Pace Int). The
last guard shows that atrioventricular (AV) counter state (AV Count STATE) is FALSE.

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧AV Count STATE = TRUE)
grd3 : sp ≥ V RP

THEN
act1 : PM Sensor V := ON

END

The events (Sensor ON V and Sensor OFF V ) is used to control the sensing activities from the ven-
tricular chamber. The pacemaker’s sensor (PM Sensor V ) of ventricular chamber synchronizes the ON
and OFF states under real time constraints. The guard (grd1) of event (Sensor ON V ) represents that
if pacemaker’s sensor (PM Sensor V ) of ventricular is OFF and a guard (grd2) represents that current
clock counter sp is less than ventriculoatrial (VA) interval or greater than or equal to ventriculoatrial (VA)
interval and atrioventricular (AV) counter state (AV Count STATE) is TRUE. The last guard (grd3)
represents that current clock counter sp is greater than or equal to VRP. If all guards are true then in action
part of this event pacemaker’s sensor (PM Sensor V ) of ventricular is ON.

EVENT Sensor OFF V
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ V RP ∧ sp < Pace Int

THEN
act1 : PM Sensor V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : last sp := sp
act5 : sp := 1
act6 : PM Actuator V := OFF
act7 : PM Actuator A := OFF

END

77



The event (Sensor OFF V ) is used to set the pacemaker’s sensor (PM Sensor V ) of ventricular is OFF.
The guards of this event represent that the pacemaker’s sensor (PM Sensor V ) of ventricular is ON and
current clock counter sp is greater than or equal to VRP and less than pace interval (Pace Int). All actions
of this event is same as event (Actuator OFF V ) of DOO operating mode, which are already described.
Here only extra action (act1) is added to set the pacemaker’s sensor (PM Sensor V ) of ventricular is in
OFF state.

EVENT tic
WHEN

grd1 : (sp < V RP ∧ PM Sensor V = OFF )
∨
(sp ≥ V RP ∧ sp < Pace Int ∧ PM Sensor V = ON∧
AV Count STATE = FALSE)

THEN
act1 : sp := sp + 1

END

The event (tic) of this abstraction progressively increases the current clock counter sp under pre-defined
pace interval (Pace Int). The guard (grd1) of this event control the pacing stimulus into the heart cham-
bers (atria and ventricular), synchronizes ON and OFF states of the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus of ventricular cham-
ber and synchronizes the ON and OFF states of ventricular pacemaker’s sensor (PM Sensor V ) under
real time constraints.

EVENT tic AV
WHEN

grd1 : AV Count ≤ FixedAV
grd2 : AV Count STATE = TRUE
grd3 : sp ≥ Pace Int− FixedAV ∧ sp < Pace Int

THEN
act1 : AV Count := AV Count + 1
act2 : sp := sp + 1

END

The last event (tic AV ) of this abstraction progressively counts the atrioventricular (AV) interval and also
increases the current clock counter sp is represented in actions (act1 and act2) . The guards (grd1− grd3)
of this event states that atrioventricular (AV) counter (AV Count) is less than and equal to atrioventricular
(AV) interval (FixedAV ), atrioventricular (AV) counter state (AV count STATE) is in TRUE state and
current clock counter sp is within the atrioventricular (AV) interval.

Abstraction of DDI mode:

In DDI operating mode of double electrode pacemaker system, the first letter ’D’ represents that the pace-
maker paces both atrial and ventricle, second letter ’D’ represents that the pacemaker senses both atrial
and ventricle and final letter ’I’ represents two conditional meaning that depends on atrial and ventricular
sensing; first is that atrial sensing inhibits atrial pacing and does not trigger ventricular pacing and second is
that ventricular sensing inhibits ventricular and atrial pacing. In the block diagram (Fig-7) of heart pacing in
DDI operating mode a new LRI follows the timing of each preceding LRI. The timing of an atrioventricular
(AV) interval occurs within this period only following a completed ventriculoatrial (VA) interval (i.e., when
no atrial sensing occurs).

78



Fig. 7 Basic block diagram of ECG rhythm strip in DDI Operating Mode

In this abstract model, we have formalized a bradycardia operating mode DDI of the double electrode pace-
maker. In this operating mode, the pacemaker uses actuators and sensors in both chambers. We have defined
two new variables PM Actuator A and PM Actuator V that represent ON or OFF states of pacemaker’s
actuators for pacing in the atrial and ventricular chambers. Similarly next two variables PM Sensor A and
PM Sensor V represent ON or OFF states of pacemaker’s sensor for sensing an intrinsic pulse from both
the atrial and ventricular chambers. An interval between two paces is defined by a new variable Pace Int
that must be between upper rate interval (URI) and lower rate interval (LRI), is represented by an invari-
ant (inv5). A variable sp (since pace) represents the current clock counter. A variable last sp represents
the last interval (in ms.) between two paces and a safety property in invariant (inv7) states that last inter-
val must be between PVARP and pace interval Pace Int. Another new variable AV Count STATE is
defined as boolean type to control the atrioventricular (AV) interval state and next variable AV Count is
defined as natural number to count the atrioventricular (AV) interval. Extra two new invariants (inv11 and
inv12) represent the safety properties. The invariant (inv11) states that when clock counter sp is less than
ventricular refractory period (VRP) and atrioventricular (AV) counter state is FALSE then the pacemaker’s
actuators and sensors of both chambers are OFF. The next invariant (inv12) represents that the pacemaker’s
actuator of ventricular is ON when clock counter sp is equal to the pace interval Pace Int.

inv1 : PM Actuator A ∈ status
inv2 : PM Actuator V ∈ status
inv3 : PM Sensor A ∈ status
inv4 : PM Sensor V ∈ status
inv5 : Pace Int ∈ URI .. LRI
inv6 : sp ∈ 1 .. Pace Int
inv7 : last sp ≥ PV ARP ∧ last sp ≤ Pace Int
inv8 : AV Count STATE ∈ BOOL
inv9 : AV Count ∈ N
inv10 : Pace Int− FixedAV < Pace Int
inv11 : sp < V RP ∧AV Count STATE = FALSE

⇒
PM Actuator A = OFF ∧
PM Actuator V = OFF∧
PM Sensor A = OFF∧
PM Sensor V = OFF

inv12 : PM Actuator V = ON ⇒ sp = Pace Int

In the abstract specification of DDI operating mode, there are ten events Actuator ON A to start pac-
ing in atria, Actuator OFF A to stop pacing in atria, Actuator ON V to start pacing in ventricular,

79



Actuator OFF V to stop pacing in ventricular, Sensor ON V to start sensing in ventricular, Sensor OFF V
to stop sensing in ventricular, Sensor ON A to star sensing in atrial, Sensor OFF A to stop sensing in
atrial, tic to increment the current clock counter sp under real time constraints and tic AV to count the
atrioventricular (AV) interval.

EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)
grd3 : sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

The events Actuator ON V and Actuator OFF V start and stop the pacemaker’s actuator (PM Actuator V )
in ventricular chamber and synchronizes ON and OFF states. The guards of event (Actuator ON V ) rep-
resent that when pacemaker’s actuator (PM Actuator V ) of ventricular is OFF, current clock counter sp
is equal to pace interval (Pace Int), in next guard current clock counter sp is greater then or equal to ven-
tricular refractory period (VRP) and post ventricular refractory period (PVARP). The actions of this event
represent that if all guards are satisfy then the pacemaker’s actuator (PM Actuator V ) of ventricular is
ON and current clock counter sp assigns to a variable (last sp).

EVENT Actuator OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : (sp ≥ Pace Int) ∧ sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : AV Count STATE = TRUE
grd4 : PM Sensor A = OFF
grd5 : PM Actuator A = OFF

THEN
act1 : PM Actuator V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : PM Sensor V := OFF
act5 : sp := 1

END

The guards (grd1, grd2) of event Actuator OFF V state that pacemaker’s actuator (PM Actuator V )
of ventricular is ON and current clock counter sp is greater than or equal to pace interval (Pace Int), VRP
and PVARP. The third guard (grd3) states that atrioventricular (AV) counter state (AV Count STATE) is
TRUE and last two guards state that the pacemaker’s sensor and actuator (PM Sensor A, PM Actuator A)
of atrial are OFF. The actions of this event reset all the parameters of operating mode of the pacemaker sys-
tem. The actions (act1 − act5) of this event state that the pacemaker’s actuator (PM Actuator V ) of
ventricular sets OFF, assigns the value of variable (AV count) as 0, atrioventricular (AV) counter state
(AV Count STATE) sets FALSE, the pacemaker’s sensor (PM Sensor V ) of ventricular sets OFF and
assigns the value of the current clock counter sp as 1.

80



EVENT Actuator ON A
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : PM Actuator A = OFF
grd4 : PM Sensor A = ON

THEN
act1 : PM Actuator A := ON
act2 : PM Sensor V := OFF
act3 : PM Sensor A := OFF

END

The actions (act1−act3) of event (Actuator ON A) state that the pacemaker’s actuator (PM Actuator A)
of atrial sets ON and the pacemaker’s sensor (PM Sensor V, PM Sensor A) of ventricular and atrial set
OFF when all guards satisfy. The first guard of this event states that the pacemaker’s sensor (PM Sensor V )
of ventricular is ON, the next guard (grd2) states that current clock counter sp is greater than or equal
to ventriculoatrial (VA) interval, VRP and PVARP, the third guard shows that the pacemaker’s actuator
(PM Actuator A) of atrial is OFF and and in last guard states that the pacemaker’s sensor (PM Sensor A)
of atrial is ON.

EVENT Actuator OFF A
WHEN

grd1 : PM Actuator A = ON
grd2 : sp = Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : AV Count STATE = FALSE

THEN
act1 : PM Actuator A := OFF
act2 : AV Count STATE := TRUE

END

The actions (act1, act2) of event (Actuator OFF A) state that the pacemaker’s actuator (PM Actuator A)
of atria sets in OFF state and atrioventricular (AV) counter state (AV Count STATE) sets in TRUE state.
The guards (grd1, grd2) of this event state that the pacemaker’s actuator (PM Actuator A) of atria is
ON, current clock counter sp is greater than or equal to ventriculoatrial (VA) interval, VRP and PVARP. In
last guard states that atrioventricular (AV) counter states (AV Count STATE) is FALSE.

EVENT Sensor ON A
WHEN

grd1 : PM Sensor A = OFF
grd2 : sp < Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : PM Sensor V = OFF

THEN
act1 : PM Sensor A := ON

END

The events (Sensor ON A and Sensor OFF A) is used to control the sensing activities from the atrial
chamber. The pacemaker’s sensor (PM Sensor A) of atrial chamber synchronizes ON and OFF states
under real time constraints. The guard (grd1) of event (Sensor ON A) represents that if the pacemaker’s
sensor (PM Sensor A) of atrial is OFF and next guard (grd2) represents that the current clock counter
sp is less than ventriculoatrial (VA) interval and greater than or equal to VRP and PVARP. The last guard
(grd3) represents that the pacemaker’s sensor (PM Sensor V ) of ventricular is OFF. If all guards are true
then in action part of this event the pacemaker’s sensor (PM Sensor A) of atrial sets ON state.

81



EVENT Sensor OFF A
WHEN

grd1 : PM Sensor A = ON
grd2 : sp < Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Sensor A := OFF
act2 : AV Count STATE := TRUE

END

The event (Sensor OFF A) is used to set the pacemaker’s sensor (PM Sensor A) of atrial in OFF
state. The guards of this event represent that the pacemaker’s sensor (PM Sensor A) of atrial is ON and
current clock counter sp is less than ventriculoatrial (VA) interval and greater than or equal to VRP and
PVARP. In actions of this event state that the pacemaker’s sensor (PM Sensor A) of atrial sets OFF and
atrioventricular (AV) counter state sets TRUE.

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧ PM Sensor A = ON)
∨
(sp ≥ Pace Int− FixedAV ∧AV Count STATE = TRUE)
grd3 : PM Actuator A = OFF

THEN
act1 : PM Sensor V := ON

END

The events (Sensor ON V and Sensor OFF V ) is used to control the sensing activities from the ven-
tricular chamber. The pacemaker’s sensor (PM Sensor V ) of ventricular chamber synchronizes ON and
OFF states under real time constraints. The guard (grd1) of event (Sensor ON V ) represents that if the
pacemaker’s sensor (PM Sensor V ) of ventricular is OFF and in next guard (grd2) shows that current
clock counter sp is greater than or equal to VRP, less than ventriculoatrial (VA) interval and the pace-
maker’s sensor (PM Sensor A) of atrial is ON, or greater than or equal to ventriculoatrial (VA) interval
and atrioventricular (AV) counter state (AV Count STATE) is TRUE. The last guard (grd3) states that
the pacemaker’s actuator (PM Actuator A) of atrial is OFF. If all guards are true then in action part of
this event, the pacemaker’s sensor (PM Sensor V ) of ventricular sets in ON state.

EVENT Sensor OFF V
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : (sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd4: PM Actuator V = OFF
grd5: PM Actuator A = OFF

THEN
act1 : PM Sensor V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : last sp := sp
act5 : sp := 1
act6 : PM Sensor A := OFF

END

82



The event (Sensor OFF V ) is used to set the pacemaker’s sensor (PM Sensor V ) of ventricular in
OFF state. The guards (grd1, grd2) of this event represent that the pacemaker’s sensor (PM Sensor V )
of ventricular is ON and current clock counter sp is greater than or equal to VRP and PVARP. The next
guard (grd3) represents that the current clock counter sp is less than ventriculoatrial (VA) interval or greater
than or equal to ventriculoatrial (VA) interval and less than pace interval (Pace Int). The last two guards
(grd4, grd5) state that the pacemaker’s actuator (PM Actuator V, PM Actuator A) of ventricular and
atrial are OFF. The actions (act1− act6) of this event state that the pacemaker’s sensor (PM Sensor V )
of ventricular sets OFF, assigns the value of variable (AV count) as 0, atrioventricular (AV) counter
state (AV Count STATE) sets FALSE, assigns the value of the current clock counter sp to new vari-
able (last sp), assigns the value of clock counter sp as 1 and sets OFF state of the pacemaker’s actuator
(PM Actuator A) of the atrial chamber.

EVENT tic
WHEN

grd1 : (sp < V RP )
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧ PM Sensor V = ON

THEN
act1 : sp := sp + 1

END

The event tic of this abstraction progressively increases the current clock counter sp under pre-defined pace
interval (Pace Int). The guards of this event control the pacing stimulus into the heart chambers (atria and
ventricular), synchronize ON and OFF states of the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus from atrial and
ventricular chambers and synchronize ON and OFF states of the pacemaker’s sensor (PM Sensor A,
PM Sensor V ) in both chambers under real time constraints.

EVENT tic AV
WHEN

grd1 : AV Count ≤ FixedAV
grd2 : AV Count STATE = TRUE
grd3 : sp ≥ Pace Int− FixedAV ∧ sp < Pace Int

THEN
act1 : AV Count := AV Count + 1
act2 : sp := sp + 1

END

The last event (tic AV ) of this abstraction progressively counts the atrioventricular (AV) interval and also
increases the current clock counter sp is represented in actions (act1 and act2) . The guards of this event
state that atrioventricular (AV) counter (AV Count) is less than and equal to atrioventricular (AV) interval
(FixedAV ), atrioventricular (AV) state (AV count STATE) is TRUE and the current clock counter sp
is within the atrioventricular (AV) interval.

Abstraction of VDD mode:

In VDD operating mode of the double electrode pacemaker system, the first letter ’V’ represents that the
pacemaker paces ventricle only, second letter ’D’ represents that the pacemaker senses both atrial and
ventricle and final letter ’D’ represents two conditional meaning that depends on atrial and ventricular
sensing; first is that atrial sensing triggers ventricular pacing and second is that ventricular sensing inhibits
ventricular pacing. In the block diagram (Fig-8) of heart pacing in VDD operating mode a new LRI follows
the timing of each preceding LRI. When a sensed P wave occurs an atrioventricular (AV) interval is triggered
within.

83



Fig. 8 Basic block diagram of ECG rhythm strip in VDD Operating Mode

In this abstract model, we have formalized a bradycardia operating mode VDD of the double electrode
pacemaker. In this operating mode, the pacemaker uses actuators and sensors in both chambers. We have
defined a new variable PM Actuator V that represents ON or OFF states of pacemaker’s actuators for
pacing in the ventricular chamber. Next two variables PM Sensor A and PM Sensor V represent the
ON or OFF states of pacemaker’s sensor for sensing an intrinsic pulse from both the atrial and ventricular
chambers. An interval between two paces is defined by a new variable Pace Int that must be between
upper rate interval (URI) and lower rate interval (LRI), is represented by an invariant (inv4). A variable
sp (since pace) represents the current clock counter. A variable last sp represents the last interval (in ms.)
between two paces and a safety property in invariant (inv6) states that last interval must be between PVARP
and pace interval Pace Int. Another new variable AV Count STATE in invariant (inv7) is defined as
boolean type to control the atrioventricular (AV) interval state and next variable AV Count is defined as
natural number to count the atrioventricular (AV) interval by invariant (inv8). Here new invariant (inv10)
represents the safety property and states that when clock counter sp is less then ventricular refractory period
(VRP) and atrioventricular (AV) counter state (AV Count STATE) is TRUE, the pacemaker’s actuator
(PM Actuator V ) of ventricular is OFF and pacemaker’s sensors of both chambers are OFF. The next
invariant (inv11) represents that pacemaker’s actuator (PM Actuator V ) of ventricular is ON when clock
counter sp is either equal to the pace interval Pace Int or clock counter sp less than pace interval Pace Int
and atrioventricular (AV) counter AV Count is greater then blanking period V Blank and greater than or
equal to the atrioventricular (AV) period FixedAV .

84



inv1 : PM Actuator V ∈ status
inv2 : PM Sensor A ∈ status
inv3 : PM Sensor V ∈ status
inv4 : Pace Int ∈ URI .. LRI
inv5 : sp ∈ 1 .. Pace Int
inv6 : last sp ≥ PV ARP ∧ last sp ≤ Pace Int
inv7 : AV Count STATE ∈ BOOL
inv8 : AV Count ∈ N
inv9 : Pace Int− FixedAV < Pace Int
inv10 : sp < V RP ∧AV Count STATE = FALSE

⇒
PM Actuator V = OFF∧
PM Sensor A = OFF∧
PM Sensor V = OFF

inv11 : PM Actuator V = ON
⇒
(sp = Pace Int
∨
(sp < Pace Int∧
AV Count > V Blank ∧
AV Count ≥ FixedAV ))

In the abstract specification of V DD operating mode, there are eight events Actuator ON V to start
pacing in ventricular, Actuator OFF V to stop pacing in ventricular, Sensor ON V to star sensing
in ventricular, Sensor OFF V to stop sensing in ventricular, Sensor ON A to star sensing in atrial,
Sensor OFF A to stop sensing in atrial, tic to increment the current clock counter under real time con-
straints and tic AV to count the atrioventricular (AV) interval.

EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)
∨
(sp < Pace Int ∧AV Count > V Blank ∧AV Count ≥ FixedAV )
grd3 : sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

The events Actuator ON V and Actuator OFF V start and stop the pacemaker’s actuator (PM Actuator V )
in ventricular chamber and synchronizes ON and OFF states. The guard (grd1) of event Actuator ON V
represents that when the pacemaker’s actuator (PM Actuator V ) of ventricular is OFF and in guard
(grd2) the current clock counter sp is equal to pace interval (Pace Int) or less than pace interval Pace Int
and atrioventricular (AV) counter (AV Count) is greater than blanking period (V Blank) and greater
than or equal to atrioventricular (AV) interval (FixedAV ). In the last guard, the current clock counter
sp is greater than or equal to ventricular refractory period (VRP) and post ventricular refractory period
(PVARP). The actions of this event represent that if all guards are satisfy then the pacemaker’s actuator
(PM Actuator V ) of ventricular is ON and clock counter sp assigns to a new variable (last sp).

85



EVENT Actuator OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : (sp = Pace Int)
∨
(sp ≥ V RP ∧ sp < Pace Int ∧AV Count > V Blank∧
AV Count ≥ FixedAV ∧AV Count STATE = TRUE)
grd2 : (sp ≥ PV ARP )

THEN
act1 : PM Actuator V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : PM Sensor V := OFF
act5 : PM Sensor A := OFF
act6 : last sp := sp
act7 : sp := 1

END

The guards of event Actuator OFF V states that the pacemaker’s actuator (PM Actuator V ) of ven-
tricular is ON and current clock counter sp is equal to the pace interval Pace Int or greater than or equal
to VRP, less than pace interval (Pace Int), atrioventricular (AV) counter (AV Count) is greater than
blanking period (V Blank), atrioventricular (AV) counter (AV Count) is greater than or equal to the
atrioventricular (AV)interval (FixedAV ) and atrioventricular (AV) counter state (AV Count State) is
TRUE. The last guard states that current clock counter sp is greater than or equal to PVARP. The actions
of this event reset the all parameters of the pacemaker for beginning the pacing cycle. In action (act1)
sets OFF state of the pacemaker’s actuator (PM Actuator V ) of ventricular, in the second action reas-
sign the value of variable (AV count) as 0, in next action (act3) sets FALSE state to the AV counter state
AV Count STATE, sets OFF state to the pacemaker’s sensor (PM Sensor V, PM Sensor A) of both
chambers in actions (act4, act5), in action (act6) assigns the value of the current clock counter sp to new
variable last sp and finally in action (act7) assigns the value of the current clock counter sp as 1.

EVENT Sensor ON A
WHEN

grd1 : PM Sensor A = OFF
grd2 : sp < Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : PM Sensor V = OFF

THEN
act1 : PM Sensor A := ON

END

The events (Sensor ON A and Sensor OFF A) is used to control the sensing activities from the atrial
chamber. The pacemaker’s sensor (PM Sensor A) of atrial chamber synchronizes ON and OFF states
under real time constraints. The guard (grd1) of event (Sensor ON A) represents that if the pacemaker’s
sensor (PM Sensor A) of atrial is OFF and guard (grd2) represents that the current clock counter sp is
less than ventriculoatrial (VA) interval and greater than or equal to VRP and PVARP. The last guard (grd3)
represents that the pacemaker’s sensor (PM Sensor V ) of ventricular is OFF. If all guards are true then
in action part of this event then the pacemaker’s sensor (PM Sensor A) of atrial sets in ON state.

86



EVENT Sensor OFF A
WHEN

grd1 : PM Sensor A = ON
grd2 : sp < Pace Int− FixedAV ∧ sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Sensor A := OFF
act2 : AV Count STATE := TRUE

END

The event (Sensor OFF A) is used to set the pacemaker’s sensor (PM Sensor A) of atrial in OFF
state. The guards of this event show that the the pacemaker’s sensor (PM Sensor A) of atrial is ON and
the current clock counter sp is less than ventriculoatrial (VA) interval and greater than or equal to VRP and
PVARP. In actions of this event state that the pacemaker’s sensor (PM Sensor A) of atrial sets in OFF
state and atrioventricular (AV) counter state (AV Count STATE) sets in TRUE state.

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧ PM Sensor A = ON)
∨
(sp ≥ Pace Int− FixedAV ∧AV Count STATE = TRUE)

THEN
act1 : PM Sensor V := ON

END

The events (Sensor ON V and Sensor OFF V ) is used to control the sensing activities from the ven-
tricular chamber. The pacemaker’s sensor (PM Sensor V ) of ventricular chamber synchronizes ON and
OFF states under real time constraints. The guard (grd1) of event (Sensor ON V ) represents that if the
pacemaker’s sensor (PM Sensor V ) of ventricular is OFF and in next guard (grd2) represents that the
current clock counter sp is greater than or equal to VRP, less than ventriculoatrial (VA) interval and the
pacemaker’s sensors (PM Sensor A) of atrial is ON or current clock counter sp is greater than or equal
to ventriculoatrial (VA) interval and atrioventricular (AV) counter state (AV Count STATE) is in TRUE
state. If all guards are true then in action part of this event, the pacemaker’s sensor (PM Sensor V ) of
ventricular sets in ON state.

EVENT Sensor OFF V
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : (sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd4: PM Actuator V = OFF

THEN
act1 : PM Sensor V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : last sp := sp
act5 : sp := 1
act6 : PM Sensor A := OFF

END

The event (Sensor OFF V ) is used to set the pacemaker’s sensor (PM Sensor V ) of ventricular in
OFF state. The guard (grd1) of this event represents that the pacemaker’s sensor (PM Sensor V ) of

87



ventricular is ON and the current clock counter sp is greater than or equal to VRP and PVARP interval. The
next guard (grd3) represents that the current clock counter sp is less than ventriculoatrial (VA) interval or
greater than or equal to ventriculoatrial (VA) interval and less than automatic pace interval (Pace Int). The
last guard (grd4) state that the pacemaker’s actuator (PM Actuator V ) of ventricular is OFF. All actions
of this event is same as event (Sensor OFF V ) of DDI operating mode which are already described in
actions part of this event (Sensor OFF V ) .

EVENT tic
WHEN

grd1 : (sp < V RP )
∨
(sp ≥ V RP ∧ sp < Pace Int ∧ PM Sensor V = ON∧
PM Sensor A = ON

THEN
act1 : sp := sp + 1

END

The event (tic) of this abstraction progressively increases the current clock counter sp under pre-defined
pace interval (Pace Int). The guard of this event control the pacing stimulus into the heart chambers
(atria and ventricular), synchronizes ON and OFF states of the pacemaker’s actuator (PM Actuator V )
of ventricular chamber and also control the sensing intrinsic stimulus of the atrial and ventricular chamber
and synchronize ON and OFF states of the pacemaker’s sensor (PM Sensor A, PM Sensor V ) in both
chambers under real time constraints.

EVENT tic AV
WHEN

grd1 : AV Count < FixedAV
grd2 : AV Count STATE = TRUE
grd3 : (sp ≥ V RP ∧ sp ≥ PV ARP ∧ sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)

THEN
act1 : AV Count := AV Count + 1
act2 : sp := sp + 1

END

The last event (tic AV ) of this abstraction progressively counts the atrioventricular (AV) interval and
also increases the current clock counter sp is represented in actions (act1 and act2) . The guards of
this event states that atrioventricular (AV) counter (AV Count) is less than atrioventricular (AV) inter-
val (FixedAV ), atrioventricular (AV) state (AV count STATE) is in TRUE state and the current clock
counter sp is within the ventriculoatrial (VA) interval (Pace Int−FixedAV ) and greater than or equal to
VRP and PVARP interval or clock counter sp is greater than or equal to atrioventricular (AV) interval and
less than pace interval (Pace Int).

Abstraction of DDD mode:

In DDD operating mode of double electrode pacemaker system, the first letter ’D’ represents that the pace-
maker paces in both atrial and ventricle chambers, second letter ’D’ represents that the pacemaker senses
intrinsic activities from both atrial and ventricle chambers and final letter ’D’ represents two conditional
meaning that depends on atrial and ventricular sensing; first is that atrial sensing inhibits atrial pacing and
triggers ventricular pacing and second is that ventricular sensing inhibits ventricular and atrial pacing. In
the block diagram (Fig-9) of heart pacing in DDD operating mode a ventriculoatrial (VA) interval follows
the timing for each atrioventricular (AV) interval and an atrioventricular (AV) interval follows the timing
for each ventriculoatrial (VA) interval, except with a ’P’ wave or an ’R’ wave (PVC) that starts timing of a
new ventriculoatrial (VA) interval.

88



Fig. 9 Basic block diagram of ECG rhythm strip in DDD Operating Mode

In this abstract model, we have formalized a bradycardia operating mode DDD of the double electrode pace-
maker. In this operating mode, the pacemaker uses actuators and sensors in both chambers. We have defined
two new variables PM Actuator A and PM Actuator V that represent ON or OFF states of pacemaker’s
actuators for pacing in the atrial and ventricular chambers. Similarly next two variables PM Sensor A and
PM Sensor V represent ON or OFF states of pacemaker’s sensor for sensing an intrinsic pulse from both
the atrial and ventricular chambers. An interval between two paces is defined by a new variable Pace Int
that must be between upper rate interval (URI) and lower rate interval (LRI), is represented by an invariant
(inv5). A variable sp (since pace) represents the current clock counter. A variable last sp represents the
last interval (in ms.) between two paces and a safety property in invariant (inv7) states that last interval must
be between PVARP and pace interval Pace Int. Another new variable AV Count STATE is defined as
boolean type to control the atrioventricular (AV) interval state and next variable AV Count is defined as
natural number to count the atrioventricular (AV) interval. The invariants (inv11,inv12 and inv13) rep-
resent the safety properties. The invariant inv11 states that when clock counter sp is less than ventricular
refractory period (VRP) and atrioventricular (AV) counter state AV Count State is FALSE, pacemaker’s
actuators and sensors of both chambers are OFF. Similarly,the next invariants (inv12 and inv13) represent
the conditions of ON state of the pacemaker’s actuators in both chambers

inv1 : PM Actuator A ∈ status
inv2 : PM Actuator V ∈ status
inv3 : PM Sensor A ∈ status
inv4 : PM Sensor V ∈ status
inv5 : Pace Int ∈ URI .. LRI
inv6 : sp ∈ 1 .. Pace Int
inv7 : last sp ≥ PV ARP ∧ last sp ≤ Pace Int
inv8 : AV Count STATE ∈ BOOL
inv9 : AV Count ∈ N
inv10 : Pace Int− FixedAV < Pace Int
inv11 : sp < V RP ∧AV Count STATE = FALSE⇒

PM Actuator V = OFF ∧ PM Sensor A = OFF∧
PM Sensor V = OFF ∧ PM Actuator A = OFF

inv12 : PM Actuator V = ON⇒
sp = Pace Int ∨ (sp < Pace Int∧
AV Count > V Blank ∧AV Count ≥ FixedAV )

inv13 : PM Actuator A = ON⇒
(sp ≥ Pace Int− FixedAV )

89



In the abstract specification of DDD operating mode, there are ten events Actuator ON A to start pac-
ing in atrial, Actuator OFF A to stop pacing in atrial, Actuator ON V to start pacing in ventricular,
Actuator OFF V to stop pacing in ventricular, Sensor ON V to start sensing in ventricular, Sensor OFF V
to stop sensing in ventricular, Sensor ON A to star sensing in atrial, Sensor OFF A to stop sensing in
atrial, tic to increment the current clock counter sp under real time constraints and tic AV to count the
atrioventricular (AV) interval.

EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)
∨
(sp < Pace Int ∧AV Count > V Blank ∧
AV Count ≥ FixedAV )
grd3 : sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

The events Actuator ON V and Actuator OFF V start and stop the pacemaker’s actuator in ventricu-
lar chamber and synchronize ON and OFF states. The guard (grd1) of event Actuator ON V represents
that the pacemaker’s actuator (PM Actuator V ) of ventricular is OFF. In guard (grd2), the current clock
counter sp is equal to pace interval (Pace Int) or less than pace interval (Pace Int) and atrioventricular
(AV) counter (AV Count) is greater than blanking period (V Blank) and greater than or equal to atri-
oventricular (AV) interval (FixedAV ). In last guard (grd3), the current clock counter sp is greater than or
equal to ventricular refractory period (VRP) and post ventricular refractory period (PVARP). The actions
represent that if all guards are satisfy then the pacemaker’s actuator (PM Actuator V ) of ventricular is
ON and the current clock counter sp assigns to new variable (last sp).

EVENT Actuator OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : (sp = Pace Int)
∨
(sp < Pace Int ∧AV Count > V Blank ∧
AV Count ≥ FixedAV
grd3 : AV Count STATE = TRUE
grd4 : PM Actuator A = OFF
grd5 : PM Sensor A = OFF

THEN
act1 : PM Actuator V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : PM Sensor V := OFF
act5 : sp := 1

END

The guards of event (Actuator OFF V ) states that the pacemaker’s actuator (PM Actuator V ) of ven-
tricular is ON and current clock counter sp is equal to pace interval (Pace Int) or less than pace interval
(Pace Int), atrioventricular (AV) counter (AV Count) is greater than blanking period (V Blank) and
atrioventricular (AV) counter is greater than or equal to atrioventricular (AV)interval (FixedAV ). The
guard (grd3) states that atrioventricular (AV) counter state (AV Count STATE) is TRUE and last two
guards represent that the pacemaker’s actuator and sensor (PM Actuator A, PM Sensor A) of atrial
chamber are OFF. The actions of this event reset the all parameters of the pacemaker. In actions part, sets

90



OFF state of the pacemaker’s actuator (PM Actuator V ) of ventricular, reassigns the value of variable
(AV count) as 0, sets FALSE state to the AV counter state (AV Count STATE), sets an OFF state to
the pacemaker’s sensor (PM Sensor V ) of ventricular chamber and finally assigns the value of the current
clock counter sp as 1.

EVENT Actuator ON A
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ Pace Int− FixedAV ∧
sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : PM Actuator A = OFF
grd4 : PM Sensor A = ON

THEN
act1 : PM Actuator A := ON
act2 : PM Sensor V := OFF
act3 : PM Sensor A := OFF

END

The actions (act1−act3) of event (Actuator ON A) state that the pacemaker’s actuator (PM Actuator A)
of atria is ON and pacemaker’s sensors (PM Sensor V, PM Sensor A) of ventricular and atrial is OFF
when all guards are satisfied. The first guard states that pacemaker’s sensor (PM Sensor V ) of ventricular
is ON , the next guard (grd2) states that current clock counter sp is greater than or equal to ventriculoatrial
(VA) interval, VRP and PVARP. The last two guards show that the pacemaker’s actuator (PM Actuator A)
of atrial is OFF and pacemaker’s sensor (PM Sensor A) of atrial is ON .

EVENT Actuator OFF A
WHEN

grd1 : PM Actuator A = ON
grd2 : AV Count STATE = FALSE
grd3 : sp ≥ Pace Int− FixedAV ∧
sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Actuator A := OFF
act2 : AV Count STATE := TRUE

END

In event Actuator OFF A, the actions (act1, act2) state that pacemaker’s actuator (PM Actuator A) of
atria is OFF and atrioventricular (AV) counter state (AV Count STATE) is TRUE when the guards are
satisfied. The first two guards (grd1, grd2) state that pacemaker’s actuator (PM Actuator A) of atrial is
ON and atrioventricular (AV) counter state (AV Count STATE) is FALSE. The last guard represents
clock counter sp is greater than or equal to ventriculoatrial (VA) interval, VRP and PVARP.

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧ PM Sensor A = ON)
∨
(sp ≥ Pace Int− FixedAV ∧
AV Count STATE = TRUE)
grd3 : PM Actuator A = OFF

THEN
act1 : PM Sensor V := ON

END

91



The events (Sensor ON V and Sensor OFF V ) is used to control the sensing activities from the ven-
tricular chamber. The pacemaker’s sensor (PM Sensor V ) of ventricular chamber synchronizes ON and
OFF states under real time constraints. The guard (grd1) of event (Sensor ON V ) represents that if
the pacemaker’s sensor (PM Sensor V ) of ventricular is OFF and next guard (grd2) represents that the
current clock counter sp is greater than or equal to VRP, less than ventriculoatrial (VA) interval and the
pacemaker’s sensor (PM Sensor A) of atrial is ON or greater than or equal to ventriculoatrial (VA) inter-
val and atrioventricular (AV) counter state (AV Count STATE) is TRUE. The last guard (grd3) states
that the pacemaker’s actuator (PM Actuator A) of atrial is OFF. If all guards are true then in action part
of this event, the pacemaker’s sensor (PM Sensor V ) of ventricular sets in ON state.

EVENT Sensor OFF V
WHEN

grd1 : PM Sensor V = ON
grd2 : sp ≥ V RP ∧ sp ≥ PV ARP
grd3 : (sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd4: PM Actuator V = OFF
grd5: PM Actuator A = OFF

THEN
act1 : PM Sensor V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : last sp := sp
act5 : sp := 1
act6 : PM Sensor A := OFF

END

The event (Sensor OFF V ) is used to set the pacemaker’s sensor (PM Sensor V ) of ventricular in
OFF state. The guards (grd1, grd2) of this event represent that the pacemaker’s sensor (PM Sensor V )
of ventricular is ON and the current clock counter sp is greater than or equal to VRP and PVARP. The next
guard (grd3) represents that the current clock counter sp is less than ventriculoatrial (VA) interval or greater
than or equal to ventriculoatrial (VA) interval and less than pace interval (Pace Int). The last two guards
(grd4, grd5) state that the pacemaker’s actuator (PM Actuator V, PM Actuator A) of ventricular and
atrial are OFF. The actions (act1−act6) of this event state that the pacemaker’s sensor (PM Sensor V ) of
ventricular sets in OFF state, assigns the value of variable (AV count) as 0, atrioventricular (AV) counter
state (AV Count STATE) sets in FALSE state, assigns the value of clock counter sp to new variable
(last sp), assigns the value of the current clock counter sp as 1 and sets OFF state of the pacemaker’s
actuator (PM Actuator A) of atrial.

EVENT Sensor ON A
WHEN

grd1 : PM Sensor A = OFF
grd2 : PM Sensor V = OFF
grd3 : sp < Pace Int− FixedAV ∧
sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Sensor A := ON

END

The events (Sensor ON A and Sensor OFF A) is used to control the sensing activities from the atrial
chamber. The pacemaker’s sensor (PM Sensor A) of atrial chamber synchronizes ON and OFF states
under real time constraints. The guard (grd1) of event (Sensor ON A) represents that if the pacemaker’s
sensor (PM Sensor A) of atrial is OFF and second guard (grd2) represents that the pacemaker’s sensor
(PM Sensor V ) of ventricular is OFF.In last guard (grd3) represents that the current clock counter sp is

92



less than ventriculoatrial (VA) interval and greater than or equal to VRP and PVARP interval. If all guards
are true then in action part of this event, pacemaker’s sensor (PM Sensor A) of atrial sets in ON state.

EVENT Sensor OFF A
WHEN

grd1 : PM Sensor A = ON
grd2 : sp < Pace Int− FixedAV ∧
sp ≥ V RP ∧ sp ≥ PV ARP

THEN
act1 : PM Sensor A := OFF
act2 : AV Count STATE := TRUE

END

The event (Sensor OFF A) is used to set the pacemaker’s sensor (PM Sensor A) of atrial in OFF
state. The guards of this event represent that the pacemaker’s sensor (PM Sensor A) of atrial is ON and
the current clock counter sp is less than ventriculoatrial (VA) interval and greater than or equal to VRP and
PVARP. In actions of this event state that the pacemaker’s sensor (PM Sensor A) of atrial sets in OFF
state and atrioventricular (AV) counter state (AV Count STATE) sets TRUE.

EVENT tic
WHEN

grd1 : (sp < V RP )
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧
PM Sensor A = ON ∧ PM Sensor V = ON

THEN
act1 : sp := sp + 1

END

The event (tic) of this abstraction progressively increases the current clock counter sp under pre-defined
pace interval (Pace Int). The guards of this event control the pacing stimulus into the heart chambers (atria
and ventricular), synchronizes ON and OFF states of the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus of atrial and ventricu-
lar chamber and synchronizes ON and OFF states of the pacemaker’s sensor (PM Sensor A, PM Sensor V )
in atrial and ventricular under real time constraints.

EVENT tic AV
WHEN

grd1 : AV Count < FixedAV
grd2 : AV Count STATE = TRUE
grd3 : (sp ≥ V RP ∧ sp ≥ PV ARP ∧
sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧
sp < Pace Int)

THEN
act1 : AV Count := AV Count + 1
act2 : sp := sp + 1

END

The last event (tic AV ) of this abstraction progressively counts the atrioventricular (AV) interval and also
increases the current clock counter (sp) is represented in actions (act1 and act2) . The guards of this event
states that atrioventricular (AV) counter (AV Count) is less than and equal to atrioventricular (AV) interval
(FixedAV ), atrioventricular (AV) state (AV count STATE) is TRUE and the current clock counter sp

93



is within the ventriculoatrial (VA) interval (Pace Int − FixedAV ) and greater than or equal to VRP and
PVARP or the current clock counter sp is greater than or equal to atrioventricular (AV) interval and less
than pace interval (Pace Int).

5.4.2 First refinement:Threshold
The pacemaker control unit delivers stimulation to the heart chambers, on the basis of measured threshold
value under safety margin. We define two new constants STA THR A and STA THR V to hold the
standard threshold value in axioms (axm1 and axm2). The threashold constants are different for the atria
and the ventricular chambers.

axm1 : STA THR A ∈ nat1 ∧ STA THR A = 75
axm1 : STA THR V ∈ nat1 ∧ STA THR V = 250

The pacemaker’s sensor starts sensing after the refractory period; Atria Refractory Period (ARP) , Ventric-
ular Refractory Period (VRP). The pacemaker’s actuator delivers a pacing stimulus when sensing value is
greater than or equal to the standard threshold constants STA THR A or STA THR V . In DOO operat-
ing mode only pacemaker’s actuators paces in atrial and ventricular chambers under automatic pace interval
without using any pacemaker’s sensors, so in this mode no any refinement related to the threashold.

First refinement of DVI mode:

In the first refinement of DVI operating mode, we formalize the concept of sensing threshold value in the
double electrode pacemaker. A pacemaker has a stimulation threshold measuring unit which measures a
stimulation threshold voltage value of heart and a pulse generator for deliverying stimulation pulses to the
heart. The pulse generator is controlled by a control unit to deliver the stimulation pulses with respective
amplitudes related to the measured threshold value under safety margin. We introduce the new variable
(Thr V ) to hold the sensing threashold value of the pacemaker’s sensor of ventricular chamber and next
variable (Thr V State) represents the TRUE and FALSE states of the pacemaker’s sensor to sense the
intrinsic activity of the ventricular chamber.

inv1 : Thr V ∈ N1

inv2 : Thr V State ∈ BOOL
inv3 : sp > V RP ∧ sp < Pace Int− FixedAV ⇒ PM Sensor V = ON
inv4 : PM Actuator V = ON ⇒ sp = Pace Int
inv5 : sp > V RP ∧ sp < Pace Int ∧ Thr V ≥ STA THR V ∧

Thr V State = TRUE ⇒ PM Sensor V = OFF
inv6 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Actuator V = OFF
inv7 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Actuator A = OFF
inv8 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor V = ON
inv9 : PM Actuator A = ON ⇒ sp ≥ Pace IntâF ixedAV â§spâV RP â§sp < Pace Int

From invariants (inv3 − inv9) represent the safety properties of the pacemaker system under pacing and
sensing activities of electrode in DVI operating mode. The third invariant (inv3) states that the pace-
maker’s sensor (PM Sensor V ) of ventricular is ON when current clock counter (sp) is greater than
VRP and less than ventriculoatrial(VA) interval. The fourth invariant state that the pacemaker’s actua-
tor (PM Actuator V ) of ventricular is ON when current clock counter sp is equal to the pace interval
Pace Int. The invariant (inv5) represents that the pacemaker’s sensor (PM Sensor V ) of ventricular is
OFF when clock counter sp is greater then VRP, less then pace interval (Pace Int), sensed value (Thr V )
is greater than or equal to standard threshold (STA THR V ) value of ventricular chamber. The next three
invariants (inv6, inv7 and inv8) represent that the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of atrial and ventricular are OFF and the pacemaker’s sensor (PM Sensor V ) of ventricular is ON when

94



clock counter sp is greater than ventriculoatrial (VA) interval, less than pace interval (Pace Int) and atri-
oventricular (AV) counter state (AV Count STATE) is TRUE. The last invariant (inv9) states that the
pacemaker’s actuator of atrial chambers can be ON when current clock counter sp is within the ventricu-
loatrial (VA) interval (Pace Int−FixedAV ) and greater than or equal to VRP and less than pace interval
Pace Int.
In this refinement we introduce the new event (Thr V alue V ) for sensing the intrinsic activities of ven-
tricular chamber. This event is synchronized with all other events of this operating mode under all safety
properties and real time constraints. The guards (grd2 − grd4) of this event state that the pacemaker’s
sensor (PM Sensor V ) of ventricular is ON, threashold state (Thr V State) of ventricular is TRUE and
sensed value (Thr V ) is less than standard threshold value (STA THR V ) of ventricular chamber. The
last guard states that either the current clock counter sp is greater than or equal to VRP and less than ven-
triculoatrial (VA) interval or the current clock counter sp is greater then and equal to atrioventricular (AV)
interval and less then pace interval (Pace Int). The actions (act1 − act2) of this event state that actual
sensed value (Thr V val) of ventricular chamber assigns to variable (Thr V ) and sets the FALSE state of
threashold ventricular state (Thr V State).

EVENT Thr Value V
WHEN

grd1 : Thr V val ∈ N
grd2 : PM Sensor V = ON
grd3 : Thr V State = TRUE
grd4 : Thr V < STA THR V
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)

THEN
act1 : Thr V := Thr V val
act2 : Thr V State := FALSE

END

We add some new actions in events (Actuator OFF V , Sensor ON V , and Sensor OFF V )1 to syn-
chronize the sensing activities using event (Thr V val) under real time constraints which are already de-
fined in the abstract model of this operating mode.

EVENT Actuator OFF V
⊕ act9 : Thr V := 0
⊕ act10 : Thr V State := FALSE

EVENT Sensor ON V
⊕ act2 : Thr V State := FALSE

EVENT Sensor OFF V
⊕ act8 : Thr V := 0

The event (tic) of this refinement model progressively increases the current clock counter sp under pre-
defined pace interval (Pace Int). The guard (grd1) of this event controls the pacing stimulus into the heart
chambers (atria and ventricular), synchronizes ON and OFF states of pacemaker’s actuators (PM Actuator A, PM Actuator V )
of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus of ventricular cham-
ber and synchronizes ON and OFF states of the pacemaker’s sensor (PM Sensor V ) in ventricular under
real time constraints. We modify the guard (grd1) of this event and add more properties to synchronize the
pacing and sensing activities and we also add new action (act2). The additional guards and action handle
the behavior of event (Thr V val) to sense the intrinsic activities from the ventricular chamber at actual
required time.

1⊕ : To add a new guard and an action.

95



EVENT tic
WHEN

grd1 : (sp < V RP ∧ PM Sensor V = OFF∧
AV Count STATE = FALSE)
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧
PM Sensor V = ON ∧AV Count STATE = FALSE∧
Thr V State = FALSE ∧ Thr V < STA THR V ))

THEN
⊕ act2 : Thr V State := TRUE

END

We add some new guards (grd4 − grd8) and an action (act3) in event (tic AV ) of this refinement. The
new guards provide more specific and stronger guards to count the atrioventricular (AV) interval and action
(act3) states that threashold state (Thr V State) of ventricular is TRUE when all guards are satisfied.

EVENT tic AV
WHEN

⊕ grd4 PM Sensor V = ON
⊕ grd5 Thr V State = FALSE
⊕ grd6 Thr V < STA THR V
⊕ grd7 PM Actuator V = OFF
⊕ grd8 PM Actuator A = OFF

THEN
⊕ act3 : Thr V State := TRUE

END

First refinement of DDI mode:

In the first refinement of DDI operating mode, we formalize the concept of sensing threshold value of
the double electrode pacemaker. A pacemaker has a stimulation threshold measuring unit which measures
a stimulation threshold voltage value of heart and a pulse generator for deliverying stimulation pulses to
the heart. The pulse generator is controlled by a control unit to deliver the stimulation pulses with respec-
tive amplitudes related to the measured threshold value under safety margin. We introduce the new variables
(Thr A and Thr V ) to hold the sensing threashold value of the pacemaker’s sensor (PM Sensor A, PM Sensor V )
of atrial and ventricular chambers. Similarly next variables (Thr A State and Thr V State) represent
TRUE or FALSE states of the pacemaker’s sensor (PM Sensor A, PM Sensor V ) to sense the intrinsic
activity of the atrial and ventricular chambers.

inv1 : Thr A ∈ N1

inv2 : Thr V ∈ N1

inv3 : Thr A State ∈ BOOL
inv4 : Thr V State ∈ BOOL
inv5 : PM Actuator V = ON ⇒ sp = Pace Int
inv6 : sp > V RP ∧ sp < Pace Int− FixedAV ⇒ PM Actuator A = OFF
inv7 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor V = ON
inv8 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Actuator V = OFF
inv9 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Actuator A = OFF
inv10 : PM Actuator A = ON ⇒ sp = Pace Int− FixedAV

96



From invariants (inv5− inv10) represent the safety properties of the pacemaker system under pacing and
sensing activities of electrode in DDI operating mode. The fifth invariant (inv5) state that the pacemaker’s
actuator (PM Actuator V ) of ventricular is ON when current clock counter sp is equal to the pace interval
Pace Int. The next invariant (inv6) states that the pacemaker’s actuator (PM Actuator A) of atrial is
ON when current clock counter sp is greater than VRP and less than ventriculoatrial(VA) interval. The next
three invariants (inv7, inv8, inv9) represent that the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of atrial and ventricular chambers are OFF and the pacemaker’s sensor (PM Sensor V ) of ventricular is
ON when current clock counter (sp) is greater than ventriculoatrial (VA) interval, less than pace interval
(Pace Int) and atrioventricular (AV) counter state (AV Count STATE) is TRUE. The last invariant
states that the pacemaker’s actuator of atrial chamber is ON when current clock counter sp is equal to
ventriculoatrial (VA) interval (Pace Int− FixedAV ).

EVENT Thr Value V
WHEN

grd1 : Thr V val ∈ N
grd2 : PM Sensor V = ON
grd3 : Thr V State = TRUE
grd4 : Thr V < STA THR V
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd6 (Thr A State = FALSE ∧ Thr A < STA THR A)
∨
PM Sensor A = OFF ∧AV Count < FixedAV

THEN
act1 : Thr V := Thr V val
act2 : Thr V State := FALSE

END

In this refinement we introduce the two new events (Thr V alue V and Thr V alue A) for sensing the
intrinsic activities from ventricular and atrial chambers. These events are synchronized with all other events
of this operating mode under all safety properties and real time constraints. The guards (grd2 − grd4) of
event (Thr V val) state that pacemaker’s sensor (PM Sensor V ) of ventricular is ON, threashold state
(Thr V State) of ventricular is TRUE and sensed value (Thr V ) is less than standard threshold value
(STA THR V ) of ventricular chamber. The next guard (grd5) represents that either clock counter (sp)
is greater than or equal to VRP and less than ventriculoatrial (VA) interval or clock counter (sp) is greater
than or equal to atrioventricular (AV) interval and less then pace interval (Pace Int). The last guard (grd6)
states that either threshold state (Thr A State) of atrial chamber is FLASE and threashold value (Thr A)
of atrial is less then standard threashold value (STA THR A) of atrial chamber or the pacemaker’s sensor
(PM Sensor A) of atrial chamber is OFF and atrioventricular (AV) counter (AV Count) is less than
atrioventricular (AV) interval (FixedAV ). The actions (act1− act2) of this event state that actual sensed
value (Thr V val) of ventricular chamber assigns to variable Thr V and sets FALSE state of threashold
ventricular state (Thr V State).

EVENT Thr Value A
WHEN

grd1 : Thr A val ∈ N
grd2 : PM Sensor A = ON
grd3 : Thr A State = TRUE
grd4 : Thr A < STA THR A
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )

THEN
act1 : Thr A := Thr A val
act2 : Thr A State := FALSE

END

97



Other new event (Thr V alue A) introduce to take the intrinsic activities of the atrial chamber. The guards
(grd2− grd4) state that the pacemaker’s sensor (PM Sensor A) of the atrial chamber is ON, threashold
state of atrial chamber is TRUE and sensed value (Thr A) of atrial chamber is less than standard threashold
(STA THR A) of atrial chamber. The last guard (grd5) of this event state that the current clock counter
sp is greater than or equal to VRP and less than ventriculoatrial (VA) interval. The actions (act1 − act2)
of this event state that actual sensed value (Thr A val) of atrial chamber assigns to variable (Thr A) and
sets FALSE state of threashold ventricular state (Thr A State).

EVENT Actuator OFF V
⊕ act6 : Thr A := 0
⊕ act7 : Thr V := 0
⊕ act8 : Thr A State := FALSE
⊕ act9 : Thr V State := FALSE

EVENT Sensor ON A
⊕ act2 : Thr A State := TRUE

EVENT Sensor OFF V
⊕ grd6 : Thr V ≥ STA THR V
⊕ act7 : Thr A := 0
⊕ act8 : Thr V := 0
⊕ act9 : Thr A State := FALSE
⊕ act10 : Thr V State := FALSE

We add some new actions and guards in events (Actuator OFF V , Sensor ON A, and Sensor OFF V )
to synchronize the sensing activities using events (Thr A val and Thr V val) under real time constraints,
which are already defined in the abstract model of this operating mode.

EVENT tic
WHEN

grd1 : (sp < V RP ∧AV Count STATE = FALSE)
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧
PM Sensor V = ON ∧ PM Actuator A = OFF∧
Thr V State = FALSE ∧ Thr V < STA THR V ))

THEN
⊕ act2 : Thr A State := TRUE
⊕ act3 : Thr V State := TRUE

END

The event (tic) of this refinement model progressively increases the current clock counter sp under pre-
defined pace interval (Pace Int). The guard of this event controls the pacing stimulus into the heart cham-
bers (atria and ventricular), synchronizes ON and OFF states of pacemaker’s actuator (PM Actuator A,
PM Actuator V ) of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus of
ventricular chamber and synchronizes ON and OFF states of pacemaker’s sensor (PM Sensor A, PM Sensor V )
in atrial and ventricular chambers under real time constraints. We modify the guard (grd1) of this event
and add more properties to synchronize the pacing and sensing activities and we also add new actions (act2
and act3). The additional guards and action handle the behavior of events (Thr A val and Thr V val) to
sense the intrinsic activities from the atrial and ventricular chambers.

98



EVENT tic AV
WHEN

⊕ grd4 PM Sensor V = ON
⊕ grd5 Thr V State = FALSE
⊕ grd6 Thr V < STA THR V
⊕ grd7 PM Actuator V = OFF
⊕ grd8 PM Actuator A = OFF

THEN
⊕ act3 : Thr V State := TRUE

END

We add some new guards (grd4 − grd8) and an action (act3) in event (tic AV ) of this refinement. The
new guards provide more specific and stronger guards to count the atrioventricular (AV) interval and action
(act3) states that threashold state (Thr V State) of ventricular sets TRUE.

First refinement of VDD mode:

In the first refinement of VDD operating mode, we formalize the concept of sensing threshold value of
the double electrode pacemaker. A pacemaker has a stimulation threshold measuring unit which measures
a stimulation threshold voltage value of heart and a pulse generator for deliverying stimulation pulses to
the heart. The pulse generator is controlled by a control unit to deliver the stimulation pulses with respec-
tive amplitudes related to the measured threshold value under safety margin. We introduce the new variables
(Thr A and Thr V ) to hold the sensing threashold value of the pacemaker’s sensor (PM Sensor A, PM Sensor V )
of atrial and ventricular chambers. Similarly next variables (Thr A State and Thr V State) represent
TRUE or FALSE state of the pacemaker’s sensor (PM Sensor A, PM Sensor V ) to sense the intrinsic
activity of the atrial and ventricular chambers.

inv1 : Thr A ∈ N1

inv2 : Thr V ∈ N1

inv3 : Thr A State ∈ BOOL
inv4 : Thr V State ∈ BOOL
inv5 : sp > V RP ∧ sp < Pace Int ∧AV Count STATE = FALSE⇒

PM Sensor A = ON
inv6 : PM Actuator V = ON ⇒ (sp = Pace Int)∨

sp < Pace Int ∧AV Count > V Blank ∧AV Count ≥ FixedAV
inv7 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor A = OFF
inv8 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor V = ON

From invariants (inv5 − inv8) represent the safety properties of the pacemaker system under pacing and
sensing activities of electrode in VDD operating mode. The fifth invariant (inv5) states that the pacemaker’s
sensor (PM Sensor A) of atrial is ON when current clock counter sp is greater than VRP and less than
pace interval (Pace Int) and atrioventricular (AV) counter state (AV Count STATE) is FALSE. The
next invariant (inv6) represents that the pacemaker’s actuator (PM Actuator V ) of ventricular is ON
when either the current clock counter sp is equal to the pace interval (Pace Int) or clock counter sp is
less then pace interval (Pace Int), atrioventricular counter (AV Count) is greater than blanking period
(V Blank) and greater than or equal to the atrioventricular (AV) interval (FixedAV ). The last two in-
variants (inv7, inv8) represent that the pacemaker’s sensor (PM Sensor A) of atrial is OFF and the
pacemaker’s sensor (PM Sensor V ) of ventricular is ON when the current clock counter sp is greater
than ventriculoatrial (VA) interval, less than pace interval (Pace Int) and atrioventricular (AV) counter
state (AV Count STATE) is TRUE.

99



EVENT Thr Value V
WHEN

grd1 : Thr V val ∈ N
grd2 : PM Sensor V = ON
grd3 : Thr V State = TRUE
grd4 : Thr V < STA THR V
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd6 (Thr A State = FALSE ∧ Thr A < STA THR A)
∨
(PM Sensor A = OFF ∧AV Count < FixedAV )

THEN
act1 : Thr V := Thr V val
act2 : Thr V State := FALSE

END

In this refinement we introduce the two new events (Thr V alue V and Thr V alue A) for sensing the
intrinsic activities from ventricular and atrial chambers. These events are synchronized with all other events
of this operating mode under all safety properties and real time constraints. The guards (grd2 − grd4) of
event (Thr V alue V ) state that the pacemaker’s sensor (PM Sensor V ) of ventricular is ON, threash-
old state (Thr V State) of ventricular is TRUE and sensed value (Thr V ) is less than standard threshold
value (STA THR V ) of ventricular chamber. The next guard (grd5) represents that either clock counter
(sp) is greater then and equal to VRP and less than ventriculoatrial (VA) interval or clock counter (sp)
is greater than or equal to atrioventricular (AV) interval and less then pace interval (Pace Int). The last
guard (grd6) states that either threshold state (Thr A State) of atrial chamber is FLASE and threashold
value (Thr A) of atrial is less then standard threashold value (STA THR A) of atrial chamber or pace-
maker’s sensor PM Sensor A of atrial is OFF and atrioventricular (AV) counter (AV Count) is less than
atrioventricular (AV) interval (FixedAV ). The actions (act1− act2) of this event state that actual sensed
value (Thr V val) of ventricular chamber assigns to variable (Thr V ) and sets FALSE state of threashold
ventricular state (Thr V State).

EVENT Thr Value A
WHEN

grd1 : Thr A val ∈ N
grd2 : PM Sensor A = ON
grd3 : Thr A State = TRUE
grd4 : Thr A < STA THR A
grd5 : (sp ≥ V RP ∧ sp < Pace Int)

THEN
act1 : Thr A := Thr A val
act2 : Thr A State := FALSE

END

Other new event (Thr V alue A) introduce to take the intrinsic activities of atrial chamber. The guards
(grd2 − grd4) state that the pacemaker’s sensor (PM Sensor A) of atrial chamber is ON, threashold
state (Thr A State) of atrial chamber is TRUE and sensed value (Thr A) of atrial chamber is less than
standard threashold (STA THR A) of atrial chamber. The last guard of this event state that the current
clock counter sp is greater than or equal to VRP and less than pace interval (Pace Int) . The actions
(act1− act2) of this event state that actual sensed value (Thr A val) of atrial chamber assigns to variable
(Thr A) and sets FALSE state of threashold atrial state (Thr A State).

100



EVENT Actuator OFF V
⊕ act6 : Thr A := 0
⊕ act7 : Thr V := 0
⊕ act8 : Thr A State := FALSE
⊕ act9 : Thr V State := FALSE

EVENT Sensor ON A
⊕ act2 : Thr A State := TRUE

EVENT Sensor OFF A
⊕ grd3 : Thr A ≥ STA THR A
⊕ act2 : Thr A State := TRUE

EVENT Sensor OFF V
⊕ grd5 : Thr V ≥ STA THR V
⊕ act7 : Thr A := 0
⊕ act8 : Thr V := 0
⊕ act9 : Thr A State := FALSE
⊕ act10 : Thr V State := FALSE

We add some new actions and guards in events (Actuator OFF V , Sensor ON A, Sensor OFF A
, and Sensor OFF V ), to synchronize the sensing activities using events (Thr A val and Thr V val)
under real time constraints, which are already defined in the abstract model of this operating mode.

EVENT tic
WHEN

grd1 : (sp < V RP
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧
PM Sensor V = ON ∧ PM Sensor A = ON∧
Thr V State = FALSE ∧ Thr V < STA THR V ))
grd2 : AV Count STATE = FALSE

THEN
⊕ act2 : Thr A State := TRUE
⊕ act3 : Thr V State := TRUE

END

The event (tic) of this refinement model progressively increases the current clock counter sp under pre-
defined pace interval (Pace Int). The guard of this event controls the pacing stimulus into the heart cham-
bers (atria and ventricular), synchronizes ON and OFF states of the pacemaker’s actuator (PM Actuator V )
of ventricular chamber and also control the sensing intrinsic stimulus of atrail and ventricular chambers and
synchronizes ON and OFF states of the pacemaker’s sensors (PM Sensor A, PM Sensor V ) in heart
chambers under real time constraints. We modify the guard (grd1) and new guard (grd2) of this event and
add more properties to synchronize the pacing and sensing activities and we also add new actions (act2
and act3). The additional guards and action handle the behavior of events (Thr A val and Thr V val) to
sense the intrinsic activities from the atrial and ventricular chambers.

101



EVENT tic AV
WHEN

⊕ grd4 PM Sensor V = ON
⊕ grd5 Thr V State = FALSE
⊕ grd6 Thr V < STA THR V
⊕ grd7 PM Actuator V = OFF
⊕ grd8 PM Sensor A = OFF

THEN
⊕ act3 : Thr V State := TRUE

END

We add some new guards (grd4 − grd8) and an action (act3) of this event (tic AV ) in refinement. The
new guards provide more specific and stronger guards to count the atrioventricular (AV) interval and action
(act3) states that threashold state (Thr V State) of ventricular sets TRUE.

First refinement of DDD mode:

In the first refinement of DDD operating mode, we formalize the concept of sensing threshold value of
the double electrode pacemaker. A pacemaker has a stimulation threshold measuring unit which measures
a stimulation threshold voltage value of heart and a pulse generator for deliverying stimulation pulses to
the heart. The pulse generator is controlled by a control unit to deliver the stimulation pulses with respec-
tive amplitudes related to the measured threshold value under safety margin. We introduce the new variables
(Thr A and Thr V ) to hold the sensing threashold value of the pacemaker’s sensor (PM Sensor A, PM Sensor V )
of atrial and ventricular chambers. Similarly next variables (Thr A State and Thr V State) represent
TRUE and FALSE states of the pacemaker’s sensor (PM Sensor A, PM Sensor V ) to sense the intrin-
sic activity of the atrial and ventricular chambers.

inv1 : Thr A ∈ N1

inv2 : Thr V ∈ N1

inv3 : Thr A State ∈ BOOL
inv4 : Thr V State ∈ BOOL
inv5 : sp > V RP ∧ sp < Pace Int− FixedAV ⇒ PM Sensor V = ON
inv6 : PM Actuator V = ON ⇒ (sp = Pace Int)∨

sp < Pace Int ∧AV Count > V Blank ∧AV Count ≥ FixedAV
inv7 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor A = OFF
inv8 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Sensor V = ON
inv9 : sp > Pace Int− FixedAV ∧ sp < Pace Int∧

AV Count STATE = TRUE ⇒ PM Actuator A = OFF
inv10 : PM Actuator A = ON ⇒ sp ≥ Pace Int− FixedAV

From invariants (inv5− inv10) represent the safety properties of the pacemaker system under pacing and
sensing activities of electrode in DDD operating mode. The fifth invariant (inv5) states that the pace-
maker’s sensor (PM Sensor V ) of ventricular is ON when current clock counter sp is greater than VRP
and less than ventriculoatrial (VA) interval. The next invariant (inv6) represents that the pacemaker’s ac-
tuator (PM Actuator V ) of ventricular is ON when either the current clock counter sp is equal to the
pace interval (Pace Int) or clock counter sp is less then pace interval (Pace Int), atrioventricular counter
(AV Count) is greater than blanking period (V Blank) and greater than or equal to the atrioventricular
(AV) interval (FixedAV ). The next three invariants (inv7, inv8, inv9) represent that the pacemaker’s
sensor (PM Sensor A) of atrial is OFF, the pacemaker’s sensor (PM Sensor V ) of ventricular is ON
and the pacemaker’s actuator (PM Actuator A) of atrial is OFF, when current clock counter sp is greater
than ventriculoatrial (VA) interval, less than pace interval (Pace Int) and atrioventricular (AV) counter
state (AV Count STATE) is TRUE. The last invariant states that the pacemaker’s actuator of atrial

102



chamber is ON when current clock counter sp is greater than or equal to the ventriculoatrial (VA) inter-
val (Pace Int− FixedAV ).

EVENT Thr Value V
WHEN

grd1 : Thr V val ∈ N
grd2 : PM Sensor V = ON
grd3 : Thr V State = TRUE
grd4 : Thr V < STA THR V
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )
∨
(sp ≥ Pace Int− FixedAV ∧ sp < Pace Int)
grd6 (Thr A State = FALSE ∧ Thr A < STA THR A)
∨
(PM Sensor A = OFF ∧AV Count < FixedAV )

THEN
act1 : Thr V := Thr V val
act2 : Thr V State := FALSE

END

In this refinement, we introduce the two new events (Thr V alue V and Thr V alue A) for sensing the
intrinsic activities from ventricular and atrial chambers. These events are synchronized with all other events
of this operating mode under all safety properties and real time constraints. The guards (grd2 − grd4) of
event (Thr V alue V ) state that the pacemaker’s sensor (PM Sensor V ) of ventricular is ON, threash-
old state (Thr V State) of ventricular is TRUE and sensed value (Thr V ) is less than standard threshold
value (STA THR V ) of the ventricular chamber. The next guard (grd5) represents that either clock
counter sp is greater then and equal to VRP and less than ventriculoatrial (VA) interval or clock counter
sp is greater than or equal to atrioventricular (AV) interval and less then pace interval (Pace Int). The
last guard (grd6) states that either threshold state (Thr A State) of atrial is FLASE and threashold value
(Thr A) of atrial is less then standard threashold value (STA THR A) of atrial chamber or the pace-
maker’s sensor (PM Sensor A) of atrial chamber is OFF and atrioventricular (AV) counter is less than
atrioventricular (AV) interval (FixedAV ). The actions (act1− act2) of this event state that actual sensed
value (Thr V val) of ventricular chamber assigns to variable (Thr V ) and sets the FALSE state of threash-
old ventricular state (Thr V State).

EVENT Thr Value A
WHEN

grd1 : Thr A val ∈ N
grd2 : PM Sensor A = ON
grd3 : Thr A State = TRUE
grd4 : Thr A < STA THR A
grd5 : (sp ≥ V RP ∧ sp < Pace Int− FixedAV )

THEN
act1 : Thr A := Thr A val
act2 : Thr A State := FALSE

END

Other new event (Thr V alue A) introduce to take the intrinsic activities of atrial chamber. The guards
(grd2 − grd4) state that pacemaker’s sensor (PM Sensor A) of atrial chamber is ON, threashold state
(Thr A State) of atrial chamber is TRUE and sensed value (Thr A) of atrial chamber is less than standard
threashold (STA THR A) of atrial chamber. The last guard of this event state that clock counter sp is
greater than or equal to VRP and less than ventriculoatrial (VA) interval. The actions (act1− act2) of this
event state that actual sensed value (Thr A val) of atrial chamber assigns to variable (Thr A) and sets
FALSE state of threashold atrial state (Thr A State).

103



EVENT Actuator OFF V
⊕ act6 : Thr A := 0
⊕ act7 : Thr V := 0
⊕ act8 : Thr A State := FALSE
⊕ act9 : Thr V State := FALSE

EVENT Sensor ON A
⊕ act2 : Thr A State := TRUE

EVENT Sensor OFF A
⊕ grd3 : Thr A ≥ STA THR A
EVENT Sensor OFF V
⊕ grd6 : Thr V ≥ STA THR V
⊕ act7 : Thr A := 0
⊕ act8 : Thr V := 0
⊕ act9 : Thr A State := FALSE
⊕ act10 : Thr V State := FALSE

We add some new actions and guards in events (Actuator OFF V , Sensor ON A, Sensor OFF A
, and Sensor OFF V ) to synchronize the sensing activities using events (Thr A val and Thr V val)
under real time constraints, which are already defined in the abstract model of this operating mode.

EVENT tic
WHEN

grd1 : (sp < V RP ∧AV Count STATE = FALSE
∨
(sp ≥ V RP ∧ sp < Pace Int− FixedAV ∧
PM Sensor V = ON ∧ PM Sensor A = ON∧
Thr V State = FALSE ∧ Thr V < STA THR V ))
grd2 : AV Count STATE = FALSE

THEN
⊕ act2 : Thr A State := TRUE
⊕ act3 : Thr V State := TRUE

END

The event (tic) of this refinement model progressively increases the current clock counter sp under pre-
defined pace interval (Pace Int). The guard (grd1) of this event control the pacing stimulus into the heart
chambers (atria and ventricular), synchronizes ON and OFF states of the pacemaker’s actuator (PM Actuator A, PM Actuator V )
of each chamber (atria and ventricular) and also control the sensing intrinsic stimulus of atrial and ventricu-
lar chambers and synchronizes ON and OFF states of the pacemaker’s sensor (PM Sensor A, PM Sensor V )
of atrial and ventricular under real time constraints. We modify the guard (grd1) and new guard (grd2) of
this event and add more properties to synchronize the pacing and sensing activities and we also add new
actions (act2 and act3). The additional guards and action handle the behavior of events (Thr A val and
Thr V val) to sense the intrinsic activities from the atrial and ventricular chambers.

104



EVENT tic AV
WHEN

⊕ grd4 PM Sensor V = ON
⊕ grd5 Thr V State = FALSE
⊕ grd6 Thr V < STA THR V
⊕ grd7 PM Actuator V = OFF
⊕ grd8 PM Sensor A = OFF
⊕ grd9 PM Actuator A = OFF

THEN
⊕ act3 : Thr V State := TRUE

END

We add some new guards (grd4 − grd9) and an action (act3) of event (tic AV ) in this refinement. The
new guards provide more specific and stronger guards to count the atrioventricular (AV) interval and action
(act3) states that threashold state (Thr V State) of ventricular sets TRUE.

5.4.3 Second refinement:Rate Modulation

Rate modulation term is used to describe the capacity of a pacing system to respond to physiologic need
by increasing and decreasing pacing rate. The rate modulation mode of the pacemaker can progressively
pace faster than the lower rate, but no more than the upper sensor rate limit, when it determines that heart
rate needs to increase. This typically occurs with exercise in patients that cannot increase their own heart
rate. The amount of rate increase is determined by the pacemaker on the basis of maximum exertion is
performed by the patient. This increased pacing rate is sometimes referred to as the “sensor indicated rate”.
When exertion has stopped the pacemaker will progressively decrease the paced rate down to the lower rate.

In this final refinement, we introduce the rate modulation function and found some new operating modes
(AOOR,VOOR,AAIR,VVIR,AATR and VVTR) of the pacemaker system. For modeling the rate modula-
tion, we introduce the new constants maximum sensor rate MSR as MSR ∈ 50 .. 175 and acc thr as
acc thr ∈ N. The maximum sensor rate (MSR) is the maximum pacing rate allowed as a result of sensor
control and it must be between 50 and 175 pulse per minute (ppm). The constant acc thr represents the
activity threshold. A new variable acler sensed is defined as acler sensed ∈ N, to store the measured
value from the accelerometer. The accelerometer is used to measure the physical activities of the body in a
pacemaker system.

The two invariants (inv1, inv2) provide the safety margin and state that the heart rate never falls below the
lower rate limit (LRL) and never exceed the maximum sensor rate (MSR) limit.

inv1 acler sensed < acc thr
⇒
Pace Int = 60000/LRL

inv2 acler sensed > acc thr
⇒
Pace Int = 60000/MSR

In this final refinement, we introduce only two new events Increase Interval and Decrease Interval, to
control the pacing rate of the double electrode pacemaker in the rate modulating operating modes. The new
events Increase Interval and Decrease Interval control the value of pace interval variable Pace Int,
whenever a measured value (acler sensed) from the accelerometer sensor goes higher or lower than the
activity threshold acc thr.

105



EVENT Increase Interval
WHEN

grd1 acler sensed > acc thr
THEN

act1 Pace Int := 60000/MSR
END

EVENT Decrease Interval
WHEN

grd1 acler sensed < acc thr
THEN

act1 Pace Int := 60000/LRL
END

Finally, we have modeled all the functional and parametric requirements of different operating modes of
the double electrode pacemaker system using stepwise refinements. We have also discovered the hierar-
chical development and relationship among all operating modes (see Figure-4) of double electrode cardiac
pacemaker.

5.5 Model Validation and Analysis

There are two main validation activities in EVENT B and both are complementary for designing a consistent
system:

• consistency checking, which is used to show that the events of a machine preserve the invariant, and
refinement checking, which is used to show that one machine is a valid refinement of another. A list
of automatically generated proof obligations should be discharged by the proof tool of the RODIN
platform.

• model analysis, which is done by the ProB tool and consists in exploring traces or scenarios of our
consistent EVENT B models. For instance, the ProB may discover possible deadlocks or hidden
properties that are not expressed by generated proof obligations.

This section conveys the validity of the model by using ProB tool [89, 83] and Proof Statistics. “Valida-
tion” refers to the activity of gaining confidence that the developed formal models are consistent with the
requirements, which expressed in the requirements document [68]. We have used the ProB tool [89] that
supports automated consistency checking of EVENT B machines via model checking [72] and constraint-
based checking [80]. Animation using ProB worked very well and we have then used ProB to validate the
EVENT B machine. This tool assists us to find potential problems, to improve invariants expressions in
our EVENT B models, for instance by generating counter-examples when it discovers an invariant viola-
tion. ProB may help in improving invariant expression by suggesting hints for strengthening the invariant
and each time an invariant is modified, new proof obligtions are generated by the RODIN platform. It is
the complementary use of both techniques to develop formal models of critical systems, where high safety
and security are required. More errors are corrected during the elaboration of the specifications while dis-
charging the proof obligations and careful cross-reading than during the animations. We have validated all
operating modes of the pacemaker in each refinement of models. The pacemaker specification is developed
and formally proved by the RODIN tool.
ProB was very useful in the development of the pacemaker specification, and was able to animate all of our
models and able to prove the absence of error (no counter example exist). The ProB model checker also
discovered several invariant violations, e.g., related to incorrect responses or unordered pacing and sensing
activities. It was also able to discover a deadlock in two of the models, which was due to the fact that “clock
counter” were not properly recycled, meaning that after a while no pacing or sensing activities occur into
the system. Such kind of errors would have been more difficult to uncover with the prover of RODIN tool.

106



Model Total number Automatic Interactive
of POs Proof Proof

Abstract Model 166 125(76%) 41(24%)
First Refinement 211 190(90%) 21(10%)
Second Refinement 67 66(99%) 1(1%)
Total 444 381(86%) 63(14%)

Table-3 : Proof statistics

The Table-3 is expressing the proof statistics of the development in the RODIN tool. These statistics mea-
sure the size of the model, the proof obligations generated and discharged by the RODIN prover, and
those are interactively proved. The complete development of double electrode pacemaker system results
in 444(100%) proof obligations, in which 381(86%) are proved automatically by the RODIN tool. The
remaining 63(14%) proof obligations are proved interactively using RODIN tool. In the model, many proof
obligations are generated due to the introduction of new functional behaviors and their parameters (thresh-
old, hysteresis and rate modulation) under real-time constraints. In order to guarantee the correctness of
these functional behaviors, we have established various invariants in stepwise refinement. Most of the
proofs are interactively discharged in the abstract level and the 1st refinement. These proof are quite simple,
and achieve with the help of “do case” and instantiation of the constants and variables. The guards of some
events are very complex, so for proving the invariants and the theorems, we simplify the guards using “do
case”. The first abstract level is in detailed due to introduction of pacemaker’s actuators and sensors of two
electrodes for both heart chambers with proper synchronized properties under real time constraints.

5.6 Conclusion and Future Works
In this report, we have presented the formal specification of the double electrode pacemaker, is a grand
challenge that is proposed by the Verified Software Initiative. We have used the EVENT B formal language
on RODIN platform to develop the formal model of the operating modes of the double electrode pacemaker.
Our approach for formalizing and reasoning about functional behaviour of pacing and sensing activities of
the pacemaker based on action-reaction under real-time constraints.
The pacemaker case study suggests that such an approach can yield a viable model that can be subjected
to useful validation against system-level properties at an early stage in the development process. We have
applied the action-reaction [59] and time based patterns [70, 91] to develop the pacemaker system. The
proposed techniques based on development patterns intend to assist in the design process of system where
correctness and safety are important issues.
More precisely, we have presented development of operating modes of double electrode pacemaker system.
For quick understanding, we have formalized several different developments, each highlighting a different
aspect of the problem, making different assumptions about the operating modes and establishing different
properties. For example, we have considered a case of constant pacing in both chanbers, sensing and pacing
synchronously, threshold parameter for an electrode sensor and rate modulation operating modes. In a
stepwise refinement, we have also discovered the hierarchical development and relationship among double
electrodes operating modes of the pacemaker (see Fig. 4).
Our developments reflect not only the many facets of the problem, but also that there is a learning process
involved in understanding the problem and its ultimate possible solutions. The approach is concerned with
separation : firstly, it proves the basic behavior of double electrode pacemaker system at abstract level
secondly it introduces the peculiarity of the specific properties. We have proved the fundamental properties
in the beginning, namely the action-reaction with real-time constraints and the uniqueness of a solution, are
kept through the refinement process (provided, of course, the required proofs are done).
The consistency of our specification has been checked through mathematical reasoning and validation ex-
periments are performed by ProB model checker regarding safety conditions. As part of our reasoning, we
have proved that the initialisation of the system is a valid one and we have calculated the preconditions
of the operations. The latter has been executed to guarantee that our intention to have total operations has
been fulfilled. At every stage of refinement we introduced the new parametric functionality of the system
and proved the consistency and refinement checking. We introduced the invariants at refinement level that
the initialisation of the whole system is valid. Proofs were quite simple, and achieved with the help of
instantiation and “do case”. The guards of some events are very complex, so for proving the invariants,
we simplify the guards using “do case”. In total, we have proved 444(100%) proof obligations, in which

107



381(86%) are proved automatically and remaining 63(14%) proof obligations are proved interactively us-
ing RODIN tool (see Table-3). Finally, we have validated the double electrode pacemaker system using the
ProB model checker as validation tool and verify the correctness of our proved double electrode pacemaker
system under the real-time constraints.
In the future, we have planned to create a formal proof based simulator for the single and double electrode
pacemaker. It can be used by the doctor to analyze the real-time heart signal and predict the operating
modes. As far as, it can be also used as a diagnostic tool to diagnose the patient and help to take the better
decision for implanting a pacemaker [88]. For our on going research, we have contacted with physician
and cardiologist experts to generalized the operating modes of single and double electrode pacemaker and
derive the common parametric functional properties through refinement tree structures that help to design
the automatic mode switching from one operating mode to another operating mode according to the heart
pacing requirement.

108



Chapter 6

Adhoc systems

Sommaire
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Overview of the modelling protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Abstract model of basic communication protocol . . . . . . . . . . . . . . . . . . . . 113

6.3.1 First Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Second Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Third Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . 121
6.3.4 Fourth Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . 122
6.3.5 Fifth Refinement : Route Discovery Protocol . . . . . . . . . . . . . . . . . . . . 124

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

109



Test and Simulation are the only verification techniques used for ad-hoc network routing protocol. Although
these techniques give us an excellent overview of the protocol behaviour, some undesirable aspects of the
protocol could still be undiscovered. Therefore formal verification is needed. This paper presents the
incremental development of the Dynamic Source Routing (DSR) ad-hoc wireless network protocol using
underlying modelling language Event-B and its associated proof tools. The development is performed in
a stepwise manner composing more advanced routing components between the abstract specification of
the ad-hoc network wireless protocol and topology was verified through a series of refinements.This model
developed in two phases, first phase for basic communication protocol and second phase for route discovery
protocol. Our contribution are in this paper to model the adhoc wireless network protocol using Event-B
and prove it.The initial model of the ad-hoc network wireless protocol provides the basic properties of the
graph (acyclic, connectivity, symmetric) and in abstraction of this model contain the five events of basic
communication protocol. In next stages of refinements include the detail information and more events are
introduced. The final step of refinement completely localized the events and similar to implementation of
ad-hoc network wireless protocol. The stepwise refinement of the ad-hoc network wireless protocol help us
to achieve a high degree of automatic proof.

6.1 Introduction
An ad-hoc network is a collection of wireless mobile nodes forming a temporary network without any
established network or centralized administration with the capability to communicate with each other. Every
mobile node acts as a router and forward traffic originated by other nodes. Each node is able to dynamically
discover and maintain routes to other node in the network. Established routes should be loop-free and
route changes should coverage quickly in large networks. The routing problem in a real ad-hoc network
is complicated due to non-uniform propagation characteristics of wireless transmission and movement of
nodes at any time [9].
There are various type of ad-hoc network wireless protocol. This paper described the incremental develop-
ment of the Dynamic Source Routing (DSR) ad-hoc wireless network protocol. In Source routing technique
the sender determine the complete sequence of nodes through which forward the data packet. The sender
explicitly lists this route in the packets header, identifying each forwarding ’hop’ by the address of the next
node to which, transmit the data packet on its way to the destination node. The protocol presented here is
explicitly designed for use in the wireless environment of an ad-hoc network. There are no periodic router
advertisements in the protocol. Instead, when a node needs a route to another node, it dynamically deter-
mines one based on local routing table or route cached information and on the results of a route discovery
protocol [9].
The conventional routing protocols are not designed for the type of dynamic topology changes that may
be present in ad-hoc networks. In conventional networks, links between routers occasionally go down or
come up, and sometimes the cost of a link may change due to congestion, but routers do not generally
move around dynamically. In an environment with mobile nodes as routers, though, convergence to new,
stable routes after such dynamic changes in network topology may be slow, particularly with distance vector
algorithms. Our dynamic source routing protocol is able to adapt quickly changes such as node movement,
yet requires no routing protocol overhead during periods in which such changes do not occur.
Validation techniques used for ad-hoc network protocols are only simulation and testing. This is an oper-
ational way to check weather a given system realization confirm to an abstract specification. By nature,
testing can be applied only after a prototype implementation of the system has been realized. Formal veri-
fication, as opposed to testing, work on models (rather than implementation) and amounts to mathematical
proof of correctness of a system. We present a way to model and prove ad-hoc network wireless proto-
cols using Event-B as a modelling language. Proving properties on ad-hoc wireless network protocols in
dynamic environment is a challenging task due to continue changing the network routes. Only a comple-
mentary technique to simulation and testing is to prove that a system operates correctly. The term for this
mathematical demonstration of the correctness of a system is formal verification. In model checking or
theorem proving, algorithms executed by computer tools are used in order to verify the correctness of sys-
tems. The user gives the description of system and defines the requirements. Knowing these parameters the
machine can perform a verification of a model. The user can refine the model until the model specifications
converge to the real system.
The basic requirements of the ad-hoc network system are basic communication protocol and route discovery

110



protocol.So we have introduced the two phases of ad-hoc network model.The basic communication protocol
is the first phase and route discovery protocol is second phase of our ad-hoc network model.The abstract
specification of route discovery protocol defined under the first phase of the model or in other way we can
say that it is an event of basic communication protocol, which is triggered in a specific condition. In the
development of ad-hoc network system we proposed the following idea, how to model the integration of
sub system of same domain and each subsystem of the system has different functionality and main system
of the domain is dependent on subsystem for some activities.
Our abstract specification includes events modelling atomic transfer of data packets between moving nodes,
loss of data packets from the route, successfully receiving of data packets by destination node and routes are
changing due to movement in nodes. The safety property of basic communication protocol is represented
as total number of sending data packets should be equal to received and lost data packets in the system. The
nature of the refinement that we verified using RODIN proof tools are safety refinement and any behaviour
(trace of events) of a refined model must be behaviours of the abstract model. Thus, since a behaviour
which results in the transferring of data packets from source node to destination node and route updating is
preserving by the abstract model, it is also preserved in a correctly refined models. Our refinements break
the atomicity of transferring the data packets into several small process or events. In event of sending the
data packets can be aborted due to network failure (intermediate node failure or not availability of any route
from source node to destination node). In case of data packet is not received by destination node, the source
node will re-send the data packet after a specified time interval known as timeout function.

6.2 Overview of the modelling protocols
The ad-hoc network wireless protocol is defined by a proof-based development of Event-B models which
are modelling techniques in a very abstract and general way. The wireless ad-hoc routing protocol maintain
up-to-date routes between all nodes in the network with routing table and link-update propagations. If
there are still no valid routes for a specific destination, it uses a route discovery process. Here we will just
present a sufficient overview of the abstract specification and refinement stages in order to help the reader
understand the rational of each refinement.
Abstract model
In the abstract model of stepwise development contains definition and properties of the network (g), finite
set of nodes (ND) and definition of closure for checking the connectivity of two distinct nodes in the
network. The first model contains the five basic events sending, receiving, losing, remove link and
add link, which are elementary events of basic communication protocol in ad-hoc network.
First refinement
In the first refinement, we add the more detail information of the communication protocol.When data packet
passes by all intermediate nodes, the intermediate nodes are using the store and forward architecture. In
this refinement we introduced the variable (gstore) which store the data packets at every intermediate
node, when an intermediate node forward the data packet to next neighboring node of the route using event
(forward).
Second refinement
This refinement is relatively complex refinement in which we introduced the route cache concept at every
node of the ad-hoc network.If the source node wants to send the data packet to any destination node, first of
all it will check own routing table and if it is unable to find the route from the route cache or local routing
table then it will start to discover the new route for the destination node using route discovery protocol.
The event (update routing table) is updating the route cache of all intermediate nodes from source node
to destination node.This event is also an abstraction of second phase of ad-hoc network as route discovery
protocol.
Third refinement
In this refinement, we have introduced the new events (broadcast rrq) and (received rrq) for discovering
the new routes.The event (broadcast rrq) send the route request packet, which may be received by those
nodes within wireless transmission range of it.The route request packet identifies the node, referred to as
the destination node of the route discovery, for which route is requested.If the route discovery is successful
the source node receives a route reply packet listing a sequence of network hops through which it may reach
the destination node using the (received rrq) event.
Fourth refinement

111



Table 6.1: Proof obligation of the ad-hoc network wireless protocol

Model Total number Automatic Interactive

of POs Proof Proof

Abstract Model 16 16(100%) 0(0%)

First Refinement 37 20(55%) 17(45%)

Second Refinement 12 11(91%) 1(9%)

Third Refinement 5 5(100%) 0(0%)

Fourth Refinement 19 17(89%) 2(11%)

Fifth Refinement 12 12(100%) 0(0%)

Total 101 81(80%) 20(20%)

In addition to the address of the original initiator of the request and the target of the request, each route re-
quest packet contains a route record, in which is accumulated a record of the sequence of hops taken by the
route request packet as it is propagated through the ad-hoc network during this route discovery.In this refine-
ment of the system we have introduced a new event (forward rrq).The new variable (route record rrq)
used to store the link information at the time of propagation of route request packets from one node to other
node.If the route request receiver node is not the target node then it add the link information to the route
record of route request packet and again broadcast it.
Fifth refinement
In this refinement of the route discovery protocol we introduced the architecture of storage of route record
at every node. Each route request packet also contains a unique request id, set by the initiator from a locally-
maintained sequence number. In order to detect duplicate route requests received, each host in the ad hoc
network maintains a list of route request packet that it has recently received on any route request. The route
request thus propagates through the ad hoc network until it reaches the target host, which then replies to
the initiator. The original route request packet is received only by those hosts within wireless transmission
range of the initiating host, and each of these hosts propagates the request if it is not the target and if the
request does not appear to this host to be redundant. Discarding the request because the host’s address is
already listed in the route record guarantees that no single copy of the request can propagate around a loop.
Also discarding the request when the host has recently seen one with the same route request packet removes
later copies of the request that arrive at this node by a different route.
Through careful use of small refinement steps and appropriate intermediate abstractions, we were able to
achieve an impressive degree of automatic proof. Here we have mentioned the table of proof obligations for
ad-hoc network.
All the proof obligations for all six levels were generated and proved using the RODIN proof tool. The
statistics from the mechanical proof effort for all of the refinement levels are outlined in Table-1. In the
table, the Total number of POs column represents the total number of proof obligations generated for each
level. The Interactive Proof column represents the number of those proof obligations that had to be proved
interactively. Those proof obligations that were not proved interactively were proved completely automati-
cally by the prover.
The complete development of ad-hoc network protocol resulted in 101 proof obligations, in which 81(80%)
were proved completely automatically by RODIN tool. The remaining 20(20%) proof obligations were
proved interactively using RODIN tool. This refinement approach together with the RODIN tool supports
an incremental style of system development. We have presented the complete refinements in top down
manner. We started with the highest level specification and then produced a model approximating the lowest
level. However in attempting to prove refinement between these models it was clear that the abstraction gap
was too large would have required a complex gluing invariant. Instead we decided that some intermediate
abstraction was required. Any modifications to the refinement model had an impact on the existing proofs.
For that we have need to give the proper gluing invariants.
As we can see from the Table-1 in refinement first we have proved 17 proofs obligations interactively out of

112



total no. of 37 proofs obligations.The most difficult proof was in first and fourth refinement of the abstract
model. Most of the interactive proof generated due to continuous changing of the network and maintain
the connectivity using transitive closure properties in dynamic environment. We know that network is not
fixed, all nodes are moving. So network structure are continuously changing. Some old connectivity are
getting lost and some new connectivity is forming in the current network due to movement of the nodes. So
proof of this dynamic property of the network is quite difficult rather then other properties of the network
protocol. So the instantiation had to be done manually in interactive prover for proving the transitive closure
property in dynamic environment with the help of appropriate axioms.In the fourth refinement we have
added two extra invariants for poving the proof obligation in route discovery protocol.The complete details
are avaialble in fourth refinement.

6.3 Abstract model of basic communication protocol
The basic block diagram of ad-hoc network protocol is shown in Figure-1.In this figure six nodes are ran-
domly distributed and source node (A) want to send the data packets to destination node (D). The straight
line represents the connectivity of ad-hoc network and dash line represents the route from source node (A)
to destination node (D).

Figure 6.1: Ad-hoc Networks

We suppose that an ad-hoc network wireless protocol allows a set of users to exchange the data packets
among themselves. Each user reside at a mobile node, and each user may engage in either sending or
receiving actions. Our abstract B model of the ad-hoc system introduces: a set of moving nodes ND with
following assumptions:

1. The network is supported by a graph (g) built on (ND).

2. The links between the nodes are bidirectional, meaning that data packets can transmit from and to
node.

3. There is no self loop in the network means node is not directly connected to itself, means that the self
loop has no meaning.

4. Nodes are finite in the network.

g ⊆ ND ×ND
g = g−1

id(ND) ∩ g = ∅
finite(ND)

closure ∈ (ND↔ND)→ (ND↔ND)
∀r ·r ⊆ closure(r)
∀r ·closure(r); r ⊆ closure(r)
∀r, s·r ⊆ s ∧ s; r ⊆ s⇒ closure(r) ⊆ s

The above item-2 represents the symmetric graph of the network. The symmetry of the graph is the repre-
sentation of the undirected graph by pairs of nodes. The item-3 specified the non-reflexivity of the graph and
item-4 specified the finite number of moving nodes in the network. There is one more important property
of the graph is connectivity. This property is defined by not connectivity but transitive closure.The fixed
point theorem states that when we consider a relation over a set, it can be represented by existing path from

113



one node to other node and define the transitive closure of the set is a relation. The fixed point theorem
which can be used as an induction rule and it also ensure that the nodes are connected with help of many
elementary pairs of nodes.
The following axioms (axm1, axm2) represent that the variable (source) and (target) representing a
function mapping data packet (Msg) to set of nodes (ND). It means that each data packet has a source and
destination node.

axm1 : source ∈ Msg→ND
axm2 : target ∈ Msg→ND

In our abstract model we have introduced the three new variables (sent, got and lost). The variable (sent)
is the set of sent data packets from any source node to the destination node in the network. The second
variable (got) is set of successfully received data packets through any destination node in the network. The
third variable (lost) is set of lost data packets due to failure of transmission of the data packet in ad-hoc
network.The invariant (inv4) represent (ALinks) relation between set of nodes (ND ↔ ND). ALinks
is set of active links in the dynamic changing ad-hoc network.It is always keeping upto-date information of
all adding and removing links in the network.

inv1 : sent ⊆ Msg
inv2 : got ⊆ Msg
inv3 : lost ⊆ Msg
inv4 : ALinks ∈ ND↔ND

The safty properties of our model is to maintain data packets information in the changing network, means if
data packet is successfully received by any target node or losting of data packet in the mid of communication
channel.The following invariants represent the safety properties of the ad-hoc network protocol.The invari-
ant (inv5) states that all the data packets received by (got) and (lost) variable is subset of (sent) variable,
means all sent data packets sended by source node either successfully received by the destination node or
lost due to transmission failure. The next invariant (inv6) states that there is no common data packet in the
ad-hoc network which received by the (got) and (lost) variables, means successfully transmitted data pack-
ets from source node to destination node represented by the (got) variable and unsuccessfully transmitted
data packets from source node to destination node represented by the (lost) variable.

inv5 : got ∪ lost ⊆ sent
inv6 : got ∩ lost = ∅

In the abstract model the data packet will transfer between two nodes in a single atomic step. This provides
for a clear and simple abstraction of the essence of the protocol. However, in the real ad-hoc network
wireless protocol the sender determine the complete sequence of nodes through which forward the data
packet. The sender explicitly lists this route in the packets header, identifying each forwarding by the
address of the next node to which, transmit the data packet on its way to the destination node. The protocol
presented here is explicitly designed for use in the wireless environment of an ad-hoc network. There are
no periodic router advertisements in the protocol. Instead, when a node needs a route to another node, it
dynamically determines one based on local routing table or route cached information and on the results
of a route discovery protocol. We have introduced the new events and variables in forthcoming models as
refinement in the incremental development of the the ad-hoc network system.In abstract specification of
the ad-hoc network wireless protocol includes events modeling, atomic transfer of data packets between
moving nodes, successfully receiving of data packets by destination node, losing of data packets and routes
changes due to movement in nodes.There are five significant events in our abstract model as follows:
The event (sending) represents the sending of data packet (data msg) from source node (s) to destination
node (t).The guards (grd1 and grd2) state that the data packet is not member of set (sent), which is sending
from source node (s) to destination node (t). The other guards of (sending) event state that source node
(s) and destination node (t) are different nodes and guard (grd6) states that source node and destination
node connected with valid route in ad-hoc network.

114



EVENT sending
ANY

s,t,data msg
WHERE

grd1 : data msg ∈ Msg
grd2 : data msg /∈ sent
grd3 : s ∈ ND ∧ t ∈ ND ∧ s 6= t
grd4 : source(data msg) = s
grd5 : target(data msg) = t
grd6 : s 7→ t ∈ closure(ALinks)

THEN
act1 : sent := sent ∪ {data msg}

END

The event (receiving) represents the successful receiving of data packet (data msg) by the destination
node (t). The guards of (receiving) event state that after sending the data packet (data msg) from source
node to destination node, should not be received by the either (got) or (lost) variables and source node of
the data packet (data msg) should be source node (s) and destination node (t).

EVENT receiving
ANY

s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s ∧ target(data msg) = t

THEN
act1 : got := got ∪ {data msg}

END

The event (losing) represents loss of data packets due to network failure or suddenly powered off of any
node or moving of node to new location and disconnected from the whole network. The guard of (losing)
event state that after sending the data packet (data msg) from source node to destination node, should
not be received by the either (got) or (lost) variables and guard (grd3) states that there is link failure from
source node (s) to destination node (t) when data packet (data msg) on any intermediate node from source
node (s) to destination node (t) or in other word we can say node (s) and node (t) are disconnected in the
network.

EVENT losing
ANY

s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s ∧ target(data msg) = t
grd3 : s 7→ t /∈ closure(ALinks)

THEN
act1 : lost := lost ∪ {data msg}

END

We know that in wireless adhoc network, no any fixed infrastructure and every node in the network work as
router and all nodes are moving from one place to other place without giving any information, so network
link infromation is always changing.For modeling this dynamic behaviour the system we proposed the
two events add link and remove link.This event always keeping the uptodate information of the adhoc
network.The (add link) event indicates that adding of new link as elementary path from node (x) to node
(y) in ad-hoc network which is not available in current network (ALinks). Similarly the (remove link)

115



event removing of link from node (x) to node (y) from ad-hoc network which is already connected to
current network (ALinks).

EVENT add link
ANY

x,y
WHERE

grd1 : x 7→ y /∈ ALinks
grd2 : x 6= y

THEN
act1 : ALinks := ALinks ∪ {x 7→ y}

END

EVENT remove link
ANY

x,y
WHERE

grd1 : x 7→ y ∈ ALinks
THEN

act1 : ALinks := ALinks \ {x 7→ y}
END

Now our main goal is to discover hidden details between abstract specifications to the concrete machine of
the ad-hoc wireless network protocol with stepwise refinement.

6.3.1 First Refinement
In the abstract model we have presented that data packet has been transferred in atomic step from source
node to the destination node. But in real ad-hoc network wireless protocol the data packet is transferred
hop by hop from source node to destination node.So our goal is to model the store and forward architecture,
where all nodes are not directly connected, and data packet must pass through a number of intermediate
nodes before reaching to destination node. In the first refinement step, we introduce data structure more
closely to store and forward architecture, and introduce the internal action for passing data packets between
these data structure.The basic block diagram of first refinement of ad-hoc network protocol is shown in
Figure-2. The block diagram represents the store and forward architecture of ad-hoc network. In this
refinement we have introduced the variable (gstore), which shown in figure as box (Store) at all distributed
nodes in ad-hoc network and all of them can exchange the data packets.

Figure 6.2: Ad-hoc Networks of First refinement

Here we introduced the new variable (gstore) relation between the set of nodes (ND) and set of data pack-
ets (Msg). The invariant (inv2) of this refinement states that after sending the data packet (data msg)
from source node to destination node, the data packets stored at intermediate node variable (gstore) be-
fore received by target node. The next invariant (inv3) states that total number of sending data packets

116



of set (sent) should be equal to received data packets of sets (got), (lost) and (gstore) variables. The
invariant (inv4) states that all data packets which stored on variable (gstore) should be member of (sent)
variable.The invariant (inv5) states that if data packet (data msg) is not the member of set (sent) then it
will be never the member of sets (got,lost and gstore). The last invariant of this refinement states that if
two nodes maps the same data packets then it will be same node in the (gstore) variable. For preserving
the store and forward architecture in ad hoc network, there are all strong invariants which explain above are
giving in following figure:-

inv1 : gstore ∈ ND↔Msg
inv2 : ∀i·i ∈ ND ∧ i ∈ dom(gstore)⇒ (got ∪ lost) ∩ gstore[{i}] = ∅
inv3 : ran(gstore) ∪ (got ∪ lost) = sent
inv4 : ∀i·i ∈ ND⇒ gstore[{i}] ⊆ sent
inv5 : ∀m·m ∈ Msg ∧m /∈ sent

⇒
m /∈ got ∧
m /∈ lost ∧
(∀i·i ∈ ND⇒ i 7→ m /∈ gstore)

inv6 : ∀m, i, j ·i 7→ m ∈ gstore ∧ j 7→ m ∈ gstore⇒ i = j

A new event (forward) introduce in this refinement, which used to transfer the data packets between
neighbouring nodes in the route and it is supposed to be there is direct link between node (x) and node
(y).The guard (grd1) of this refinement states that data packet (data msg) should be member of only set
(sent). The guard (grd2) states that there is direct link between two nodes and link is member of current
active network (ALinks). The guards (grd3, grd4) of this event state that node (t) is the destination
node of data packet and node (x) is not the final destination node. The last two guards (grd5, grd6) state
that node (x) map to data packet (data msg) should be member of (gstore) variable, means data packet
(data msg) is stored on node (x) in ad-hoc network and data packet is not member of (gstore) at node
(y). If event will satisfy all the guards, then intermediate node (x) will transfer the data packet (data msg)
to next neighbouring node (y) of the route.

EVENT forward
ANY

t,x,y,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : x 7→ y ∈ ALinks
grd3 : target(data msg) = t
grd4 : x 6= target(data msg)
grd5 : x 7→ data msg ∈ gstore
grd6 : y 7→ data msg /∈ gstore

THEN
act1 : gstore := (gstore \ {x 7→ data msg}) ∪ {y 7→ data msg}

END

In the first refinement of this model we introduced the new variable (gstore). In the refinement of (sending)
event we have added a new guard and an action. The new guard represents that s 7→ data msg should not
be member of (gstore) variable and the new action represents that s 7→ data msg should be added to
(gstore) variable.

117



EVENT sending
ANY

s,t,data msg
WHERE

⊕ grd7 : s 7→ data msg /∈ gstore
THEN

⊕ act2 : gstore := gstore ∪ {s 7→ data msg}
END

In the refinement of event (receiving), we have added a new guard and an action. The new guard rep-
resents that t 7→ data msg should be member of (gstore) variable and the new action represents that
t 7→ data msg should be removed from the gstore variable at the destination node.

EVENT receiving
ANY

s,t,data msg
WHERE

⊕ grd4 : t 7→ data msg ∈ gstore
THEN

⊕ act2 : gstore := gstore \ {t 7→ data msg}
END

In the refinement of event (losing), a new added guard represents that data packet (data msg) is member
of (gstore) variable and a new added action represents that t 7→ data msg should be removed from the
(gstore) variable from the intermediate node (x).

EVENT losing
ANY

s,t,data msg
WHERE

⊕ grd4 : x 7→ data msg ∈ gstore
THEN

⊕ act2 : gstore := gstore \ {x 7→ data msg}
END

6.3.2 Second Refinement
The basic requirements of the ad-hoc network system are basic communication protocol and route discovery
protocol.So we have introduced the two phases of ad-hoc network model.The basic communication protocol
is the first phase and route discovery protocol is second phase of our ad-hoc network model. We have
introduced the abstract specification in machine M0 and stepwise refinement in machine M1 and machine
M2 of basic communication protocol. In this refinement we added new event (update routing table) for
taking the new changes in routing table and this event is triggered whenever source node wants to transmit
the data packets to any destination node and there is not available a single route in local routing table of
source node.The route discovery protocol is another phase of our model and abstract specification of this
model is event (update routing table) in the second refinement of the basic communication protocol or
first phase of the ad-hoc network system.In the development of ad-hoc network system we proposed the
following idea, how to model the integration of sub system of same domain and each subsystem of the
system has different functionality and main system of the domain is dependent on subsystem for some
activities.
The abstract specification of route discovery protocol discover the route and update the routing table of all
other nodes in atomic step. In the next refinement of ad-hoc network we introduced the all hidden details of
route discovery protocol.Route discovery protocol is a subsystem in ad-hoc network wireless protocol.Route
Discovery allows any node in the ad-hoc network to dynamically discover a route to any other node in the

118



ad-hoc network, whether directly reachable within wireless transmission range or reachable through one or
more intermediate network hops through other nodes. In case of changing in network topology or broken
route the route discovery protocols used to discover the new route from source node to destination node.For
example, when source node s is communicating with destination node t, the node s sends data packets
to node t along with the selected route. During their communication, if the node s gets to know that the
communication route is broken, the node s does not need to rediscover a new route immediately because
node s might have detected several routes in the previous discovery. It can then choose another available
route and replace the broken one. Until all the routes are not reachable to the destination node, the system
will start route discovery again.

In the second refinement of ad-hoc network , the block diagram in Figure-3 represents the local routing table
resides at every node and whenever any source node wants to transfer the data packet to any other node then
it select the route from the local routing table.In this refinement the source node and all connected nodes
are updating their routing table in one shot.

Figure 6.3: Ad-hoc Networks of Fifth refinement

This is a relatively complex and important refinement in which introduce a variable (alinks) representing
a total function mapping set of nodes (ND) to relation between set of nodes (ND ↔ ND). The variable
(alinks) contains only set of links information between node to node.The following invariant represents
the type of (alinks).

inv1 : alinks ∈ ND→ (ND↔ND)

In this refinement, we introduce a new event (update routing table) for updating the routing table (alinks)
which reside at each node (ND). All routing tables are updated through event (update routing table)
when route is not available in routing table at the time of sending the data packets to any destination node
by using the route discovery protocol.The guard (grd1) states that node (s) and node (t) are member of set
of nodes (ND). The guard (grd2) represents the typr of variable (routeSet) and guard (grd3) states that
there is no link between source node (s) to destination node (t) in routing table set (alinks). The variable
(alinks) always keep some stale links information due to continue changing the node location in ad-hoc
network.The guard (grd4) states that E is subset of connected nodes between source node to any node of
the ad-hoc network in current active link set (ALinks). The final guard (grd5) of this event find the set of
links from set of nodes (E) in the current active link set (ALinks).The action of this event states that the
set of nodes (E) are updating their routing table.

119



EVENT update routing table
ANY

s,t,E,routeSet
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : routeSet ∈ ND↔ND
grd3 : s 7→ t /∈ closure(alinks(s))
grd4 : E ⊆ {x|x ∈ ND ∧ s 7→ x ∈ closure(ALinks)}
grd5 : routeSet ⊆ closure(E � ALinks)

THEN
act1 : alinks := alinks �− (λn·n ∈ E|alinks(n) ∪ routeSet)

END

In this refinement, the event (sending) keeps all the invariants which explained already of this refinement
and adding a new guard in this event. The new guard state that there is connection between source node (s)
to destination node (t) or there is valid route from source node (s) to destination node (t) then source node
will transfer the data packets.

EVENT sending
ANY

s,t,data msg
WHERE

⊕ grd8 : s 7→ t ∈ closure(alinks(s))
THEN

...
END

There is no changing in the refinement of event (receiving). But a new guard and is adding and an old
guard is removing from event (losing), which shown in following figure. The new added guard states that
in the local routing table of node (x) has not proper path from source node (s) to destination node (t) or
node (s) and node (t) are disconnected.

EVENT losing
ANY

s,t,x,data msg
WHERE

	 grd4 : s 7→ t /∈ closure(ALinks)
⊕ grd4 : s 7→ t /∈ closure(alinks(x))

THEN
...

END

In the refinement of (forward) event a new guard is adding and it states that from any intermediate node
(y) to destination node (t) is connected, then the node (x) can forward the data packets to next neighbouring
node (y) of the network.

EVENT forward
ANY

x,y,data msg
WHERE

⊕ grd7 : y 7→ t ∈ closure(alinks(x))
THEN

...
END

120



6.3.3 Third Refinement : Route Discovery Protocol
We have explained already that route discovery protocol is the second necessary phase of ad-hoc network
protocol for finding the new available route in active network and we have described the abstract specifica-
tion of the route discovery protocol in last refinement as an event (update routing table).This event can
be triggered by any two event (sending) and (forwarding), in case of network changing and there is no
more links or path are available for sending the data packets to destination node.In the third and next re-
finements we will describe only the modeling of route discovery protocol.Route Discovery protocol allows
any node in the ad-hoc network to dynamically discover a route to any other node in the ad-hoc network,
whether directly reachable within wireless transmission range or reachable through one or more intermedi-
ate network hops through other nodes. In case of changing in network topology or broken route the route
discovery protocols used to discover the new route from source node to destination node.
The abstract specification of route discovery protocol discover the route in atomic step. In this refinement
we have introduced only two events (broadcast rrq) and (received rrq) for discovering the new routes.
The event (broadcast rrq) send the route request packet, which may be received by those nodes within
wireless transmission range of it.
The route request packet identifies the node, referred to as the destination node of the route discovery, for
which route is requested.If the route discovery is successful and the source node receives a route reply
packet listing a sequence of network hops through which it may reach the destination node using event
(received rrq). We defined the constant (rrq) as a set of route request packets, which used to broadcast
for discovering the new route from the source node. We introduced the two constant (source rrp) and
(target rrp) represent the total function maps a set of route request packets (rrq) to set of nodes (ND)
for defining the source node and target node with each route request packet respectively.The other constant
(rrp) introduced here for representing the set of route reply packets, it is returned by any destination node
when route discovery process has been completed using route request packets. The constant (source rrp)
represents total function maps a set of route reply packets (rrp) to set of nodes (ND) for initializing the
source node for each route reply packets.The last constant (seqNo) represents the total function maps a set
of route request packets (rrp) to set of Natural numbers.It is sequence no. which is different for every route
request packet

axm1 : source rrq ∈ rrq→ND
axm2 : target rrq ∈ rrq→ND
axm3 : source rrp ∈ rrp→ND
axm4 : seqNo ∈ rrq→ N1

in this refinement we introduced the two invariants.The invariant (inv1) states that the variable (bcast rrq)
is subset of (rrq) and whenever any node will broadcast the route request packet then the new route request
packet will be member of variable (bcast rrq).Similarly other invariant (inv2) states that the variable
(network rrp) is subset of (rrp) and any route reply packet will be member of this subset when the target
node will return the route reply packet to the source node.

inv1 : bcast rrq ⊆ rrq
inv2 : network rrp ⊆ rrp

We are not describing here in this refinement of other events of first phase model (basic communication
protocol) due to no changing in subsequent refinements of events.Here we will introduces only the new
events of second phase of this model or route discovery protocol.
In this refinement of Route discovery protocol, there are two events broadcast rrq and received rrq. The
event broadcast rrq broadcast the route request packet to other nodes for discovering the route for any
destination node. The guard (grd1) states that node (s) and node (t) is member of set (ND). The guard
(grd2) represents that new route requested packet (rrq pkt) should not be member of subset broadcasted
route request packet (bcast rrq). The guard (grd3) states that there is not available path from source node
(s) to destination node (t).This guard is essential condition for triggering this event because at the time of
sending or forwarding the packet, each node always check the path from local routing table for destination
node.If path will not available then the node will broadcast the route request packet for discovering the new

121



path in active current network.The guards (grd4, grd5) state that each route request packet has source and
destination node. The action (act1) of this event states that if all the guards will satisfy then it will broadcast
the route request packet in network for discovery the new route.

EVENT broadcast rrq
ANY

s, t, rrq pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : rrq pkt /∈ bcast rrq
grd3 : s 7→ t /∈ closure(alinks(s))
grd4 : source rrq(rrq pkt) = s
grd5 : target rrq(rrq pkt) = t

THEN
act1 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

The other new event (received rrq) of this refinement send the route reply packet to the source node with
discovered route information in the network. The guard (grd1) states that node (s) and node (t) is member
of set (ND). The guard (grd2) represents that new route requested packet (rrq pkt) should be member
of subset broadcasted route request packet (bcast rrq). The guard (grd3, grd4) states that target node of
the route request packet is (t) and source node of the route request packet is not equal to (t).This condition
have very strong properties that if any node received the route request packet, it should be only and only
target node.The last guard (grd5) states that returning route reply packet should not be member of subset
(network rrp).The action (act1) of this event states that if all the guards will satisfy then it will send the
route reply packet to the source node and action (act2) states that the route request packet will be removed
by target node from the network after successfully discovering of route.

EVENT received rrq
ANY

s, t, rrq pkt, rrp pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : rrq pkt /∈ bcast rrq
grd3 : target rrq(rrq pkt) = t
grd4 : source rrq(rrq pkt) 6= t
grd5 : rrp pkt /∈ network rrp

THEN
act1 : network rrp := network rrp ∪ {rrp pkt}
act2 : bcast rrq := bcast rrq \ {rrq pkt}

END

6.3.4 Fourth Refinement : Route Discovery Protocol
In the last refinement of route discovery protocol we introduced only two new events but in real route
discovery protocol the complete route has been discovered using many several process or events.In this
refinement we have tried to discover more and more information about route discovery protocol. In addition
to the address of the original initiator of the request and the target of the request, each route request packet
contains a route record, in which is accumulated a record of the sequence of hops taken by the route request
packet as it is propagated through the ad-hoc network during this route discovery.Each route request packet
also contains a unique request id known as sequence number has been introduced in next refinement.In this
refinement of the system we have introduced the four more invariants and a new event (forward rrq) . A
new variable (route record rrq) representing a total function mapping set of route request packets (rrq)
to relation between set of nodes (ND↔ND).This variable used to store the link information at the time of
propagation of route request packets from one node to other node.If the route request receiver node is not the

122



target node then it add the link information to the route record of route request packet and again broadcast
it. Similarly other new variable (route record rrp) representing a total function mapping set of route
reply packets (rrp) to relation between set of nodes (ND↔ND).This variable also used to store the link
information which is collected by the route request packet, when destination node returned the route reply
packet to the source node. There are two more invariants (inv3, inv4) introduced which shown in below
figure.The invariants (inv3, inv4) are required to prove some proof obligation.The following invariants
represent that sequence of accumulated node information and route record information is subset of all
connected nodes to source node and subset of links of connected links from source node to other nodes
respectively. We can’t check this properties with current active links set (ALinks), because this is too
strong property and it is possible that after the completion of route discovery process any search link can
be disappear.So we assumed that links are valid for a while and nodes are moving with moderate rate and
not any link will be disappear during route discovery process.In the real network protocol this process is
happenig so fast that network structure look like constant, so our assumptions are correct and proved by
rodin tool.

inv1 : route record rrq ∈ rrq→ (ND↔ND)
inv2 : route record rrp ∈ rrp→ (ND↔ND)
inv3 : ∀rp, al, s·s ∈ ND ∧ rp ∈ rrp ∧ al ⊆ ND ×ND ∧ al ∈ dom(closure)

⇒
dom(route record rrp(rp)) ⊆ {x·s 7→ x ∈ closure(al)|x}

int4 : ∀al, E, rp·E ⊆ ND ∧ rp ∈ rrp ∧ al ⊆ ND ×ND ∧ al ∈ dom(closure)
⇒
route record rrp(rp) ⊆ closure(E � al)

The new event (forward broadcast) introduced in this refinement for broadcasting the route request
packet to the neighboring node when any node is not the target node for route discovery process.The guard
(grd1) states that node (x) and node (y) is member of set nodes (ND).The second guard showing that
route request packet (rrq pkt) should be member of subset bcast rrq).The third guard (grd3) states that
there is proper connection between neighboring nodes(x, y).And last two guards (grd4, grd5) state that
node (y) is not source node and as well as destination node of the route request packet.As the actions of this
event (act1, act2) state that when all guard will satisfy then the first action will add new link information
(x 7→ y) to the route request packet and again broadcast it continue for route discovery process.This process
will be repeated many time, until the destination node will not receive the route request packet.

EVENT forward broadcast
ANY

x, y, rrq pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : rrq pkt ∈ bcast rrq
grd3 : x 7→ y ∈ alinks(x)
grd4 : source rrq(rrq pkt) 6= y
grd5 : target rrq(rrq pkt) 6= y

THEN
act1 : route record rrq(rrq pkt) := route record rrq(rrq pkt) ∪ {x 7→ y}
act2 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

In this refinement, we are adding two new guards and removing two old guards from the event (update routing table).New
two added guards are more specific then the previous refinement old guards.The changed guards are shown
in the following figure. We have added new invariants (inv3, inv4) for proving the proof obligation in this
refinement which already explain in the beginning of the this refinement.

123



EVENT update routing table
ANY

s,t,E,routeSet,rrp pkt
WHERE

	 grd3 : E ⊆ {x|x ∈ ND ∧ s 7→ x ∈ closure(ALinks)}
	 grd4 : routeSet ⊆ closure(E � ALinks)
⊕ grd3 : E = dom(route record rrp(rrp pkt))
⊕ grd4 : routeSet = route record rrp(rrp pkt)

THEN
...

END

There is no changing in event (broadcast rrq of this refinement while in the event (received rrq) we are
adding two extra guards which shown in the following figure.These two guards state that in the discovered
route by route request packet has proper path from source node (s) to the destination node (t) and route
record of route request packet is equal to the route record of route reply packet, and route reply packet will
send to the source node for updating the route information.

EVENT received rrq
ANY

s, t, rrq pkt, rrp pkt
WHERE

⊕ grd6 : s 7→ t ∈ closure(route record rrq(rrq pkt))
⊕ grd7 : route record rrp(rrp pkt) = route record rrq(rrq pkt)

THEN
...

END

6.3.5 Fifth Refinement : Route Discovery Protocol

In this refinement of the route discovery protocol we introduced the new variable (store rrq), which used
to store the route request packet at every node. Each route request packet also contains a unique request id,
set by the initiator from a locally-maintained sequence number. In order to detect duplicate route requests
received, each host in the ad hoc network maintains a list of route request packet that it has recently received
on any route request.
The route request thus propagates through the ad hoc network until it reaches the target host, which then
replies to the initiator. The original route request packet is received only by those hosts within wireless
transmission range of the initiating host, and each of these hosts propagates the request if it is not the target
and if the request does not appear to this host to be redundant. Discarding the request because the host’s
address is already listed in the route record guarantees that no single copy of the request can propagate
around a loop. Also discarding the request when the host has recently seen one with the same route request
packet removes later copies of the request that arrive at this node by a different route.
In order to return the route reply packet to the initiator of the route discovery, the target host must have a
route to the initiator. If the target has an entry for this destination in its route cache, then it may send the
route reply packet using this route in the same way as is used in sending any other packet. Otherwise, the
target may reverse the route in the route record from the route request packet, and use this route to send
the route reply packet. This, however, requires the wireless network communication between each of these
pairs of hosts to work equally well in both directions, which may not be true in some environments.
The new variable store rrq representing a total function mapping set of nodes (ND) to power set of route
request message (rrq). The following invariant represents the type of (store rrq).

inv1 : store rrq ∈ ND→ P(rrq)

124



In this refinement we introduced the new event (forward broadcast skip).This event will be triggered
when any node already received the route request packet and store in local route request packet store vari-
able (store rrq).The guards (grd1 − grd5) already explain in the event (forward broadcast) but two
new guards (grd6, grd7) are adding in this new events.The guard (grd6) states that route request packet
(rrq pkt) is already stored in the local route request packet store variable (store rrq) of intermediate node
(y).The guard (grd7) states that the sequence no. or request id of the route request packet in set of route
request packet at any intermediate node (y).

EVENT forward broadcast skip
ANY

x, y, rrq pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : rrq pkt ∈ bcast rrq
grd3 : x 7→ y ∈ alinks(x)
grd4 : source rrq(rrq pkt) 6= y
grd5 : target rrq(rrq pkt) 6= y
grd6 : rrq pkt ∈ store rrq(y)
grd7 : seqNo(rrq pkt) ∈ {p·p ∈ store rrq(y)|seqNo(p)}

THEN
skip

END

There is no changing in the events of (update routing table) and (received rrq) of this refinement. In
the event (broadcast rrq) we have added only one new action which shown in the following figure. The
new added action (act2) in the refinement of this event states that when any route request initiator node
broadcast the route request packet then it will also store the route request packet to local store variable
(store rrq).

EVENT broadcast rrq
ANY

s, t, rrq pkt
WHERE

...
THEN

⊕ act2 : store rrq(s) := store rrq(s) ∪ {rrq pkt}
END

In the event ((forward broadcast) of this refinement, we are adding two new guards and one extra action.
The guard (grd6) states that route request packet (rrq pkt) is not stored in the local route request packet
store variable (store rrq) of node (y) and the guard (grd7) states that the sequence no. or request id of the
route request packet not in set of route request packet at node (y).The new added action (act3) states that
when any route request receiver node broadcast the route request packet then it will store the route request
packet to local store variable (store rrq) of the node.

EVENT forward broadcast
ANY

s, t, rrq pkt,
WHERE

⊕ grd6 : rrq pkt /∈ store rrq(y)
⊕ grd7 : seqNo(rrq pkt) /∈ {p·p ∈ store rrq(y)|seqNo(p)}

THEN
⊕ act3 : store rrq(y) := store rrq(y) ∪ {rrq pkt}

END

125



6.4 Conclusion
The stepwise development of adhoc network help us to discover the exact behaviour of basic communication
protocol and route discovery protocol.We have developed the whole system in two phases.First phase for
basic communication protocol and second phase for route discovery protocol.we have applied the new
apporoach for developing the subsystem and integrating them with main system in same domain.Second
phase of system is triggerd by an event of first phase. Our contribution are in this paper to model the
adhoc wireless network protocol using Event-B and prove it by stepwise refinements and understand the
basic notion of adhoc network wireless protocol.Proofs help us to understand the role of graph properties
in dynamic environment and correctness of the solution. The refinements gradually introduce the various
invariants of the system. No assumption is made on the size of the network but some assuption considering
for moving speed of the node. The proof leads us to the discovery of the confirmation event to get the
complete correctness, which was not the case of the I/O automata modelling. We have outlined how an
incremental refinement approach to the ad-hoc system allowed us to achieve a very high degree of automatic
proof.The powerful support provided by the rodin tool was essential to achieving what we believe was a
very successful development. Rodin proof was used to generate the hundreds of proof obligations and to
discharge those obligations automatically and interactively. Another key role of the tool was in helping us
to discover appropriate gluing invariants to prove the refinements. Without this level of automated support,
making the changes to the refinement chain that we did make would have been far too tedious. Our approach
is the methodology of separation of concerns: first prove the algorithm at an abstract (mathematical) level;
then, and only then, gradually introduce the peculiarity of the specific protocol. What is important about
our approach is that the fundamental properties we have proved at the beginning, namely the reachability
and the uniqueness of a solution, are kept through the refinement process (provided, of course, the required
proofs are done). It seems to us that this sort of approach is highly ignored in the literature of protocol
developments where, most of the time, things are presented in a flat manner directly at the level of the final
protocol itself.

126



Chapter 7

SmartCards

Sommaire
7.1 Analysing cryptographic protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Pattern for Modelling the Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 The Pattern Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.2 An Example of the Pattern Application . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Event-B Models of the Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.1 Abstract Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.2 First Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.3 Second refinement: attacker’s knowledge . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

127



Ce chapitre a été rédigé par Nazim Benaissa et Dominique Méry.
We consider the refinement-based process for the development of security protocols, which are very com-
plex systems to specify, to prove and to design. Using existing protocols, we would like to provide proof-
based patterns for integrating cryptographic elements in an existing protocol. Our approach is based on
incremental development using Event B refinement, which makes proofs easier and which makes the de-
sign process faithfull to the structure of the protocol as the designer thinks of it. Communication channels
are supposed to be unsafe. Analysing cryptographic protocols requires precise modelling of the attacker’s
knowledge. The attacker’s behaviour conforms to the Dolev-Yao model. In the Dolev-Yao model, the at-
tacker has full control of the communication channel, and the cryptographic primitives are supposed to be
perfect. We illustrate the technique on the Shoup-Rubin protocol with smart cards.

7.1 Analysing cryptographic protocols
Cryptographic protocols are complex software systems; they are, therefore, in need of high level modelling
tools and concepts. They have also underlying desired properties, which can be expressed logically like se-
crecy, authenticity. Formal methods are widely used for cryptographic protocols more as a verification tool,
not as a design tool. The goal of this paper is to present an attempt to mix the two: design, predominant
in software engineering, and formal methods. This leads to the notion of proof-based design allowing a
correct-by-construction approach to security protocols.

Our approach is based on incremental development using refinement. The refinement of a formal model
allows us to enrich a model in a step-by-step approach, and is the foundation of our correct-by-construction
approach. Refinement is used to make proofs easier but also to make the design process faithfull to the
structure of the protocol as the designer thinks of it. Implicit assertions are identified for proving the
protocol secure at each refinement step. We use refinement also to introduce smart cards in order to be
closer to the protocol implementation and to prove the implementation correct with respect to the protocol
security properties.
To be able to prove security properties on a protocol, we must be able to model the knowledge of the
attacker. A pet model of attacker’s behaviour is the Dolev-Yao model [41]; this model is an informal
description of all possible behaviours of the attacker as described by N. Benaissa [33]. Hence, we present
a proof-based design to model and prove key protocols using EVENT B [25, 69] as a modelling language.
We give a presentation of a proof-based design framewprk and an application of the proof-based design on
the Shoup-Rubin protocol [43] with smart cards.
Proving properties on cryptographic protocols such as secrecy is known to be undecidable. However, works
involving formal methods for the analysis of security protocols have been carried out. Theorem provers
or model checkers are usually used for proving properties. For model checking, one famous example is
Lowe’s approach [47] using the process calculus CSP and the model checker FDR. Lowe discovered the
famous bug in Needham-Schroeder’s protocol. Model checking is efficient for discovering an attack if there
is one, but it can not guarantee that a protocol is reliable with respect to a list of given assumptions on
the environment or on the possible attacks. We should be carefull on the question of stating properties
of a given protocol and it is clear that the modelling language should be able to state a given property
and then to check the property either using model checking or theorem proving. Other works are based
on theorem proving: Paulson [50] used an inductive approach to prove safety properties on protocols. He
defined protocols as sets of traces and used the theorem prover Isabelle [49]. Other approaches, like Boli-
gnano [35], combine theorem proving and model checking taking general formal method based techniques
as a framework. Let us remember that we focus on a correct-by-construction approach and we are not (yet)
proposing new cryptographic protocols: we analyse existing protocols and show how they can be composed
and decomposed using proved-based design frameworks.

7.2 Pattern for Modelling the Protocols
Our goal is to define a design pattern for modelling cryptographic protocols using EVENT B. The pattern
is defined by a proof-based development of EVENT B models which are modelling protocols first with in
a very abstract model followed by several refinements. The definition of models is based on the notion of

128



Far-end 
operative

Once 
Authenticated 

Entity
authentication

Key
confirmation

Fresh Key Key Secrecy

Good Key

Mutual belief
in key

Figure 7.1: Hierarchy of authentication and key establishment goals

Double 
refinement

M.0

 Far-end 
operative

M.1

Once 
Authenticated 

M.0.1

Entity
authentication

Figure 7.2: Hierarchy of authentication and key establishment goals

transaction. The choice of the details added in each refinement is crucial, this choice is guided by several
criteria. First, introducing refinement in general helps to make proofs easier and increases the automatic
proofs rate. Second, refinement introduces automation in the design process: in each refinement step,
assertions for proving the protocol correct are generated and have to be proved. The hierarchy of the
properties to prove corresponds to the hierarchy of the chosen refinements. Boyd and Mathuria [40] give
a hierarchy of some important properties that have to be proved on cryptographic protocols in general and
properties related with key establishment protocols (Figure 7.1). Far-end operative, peer knowledge, key
freshness and key secrecy are generic properties, while the other properties can be obtained by combining
these generic ones.

These properties can be divided into two categories, user-oriented goals and key-oriented goals :

• User-oriented goals include far-end operative property and the knowledge of peers among the com-
munication channel. Combining these two generic properties leads to entity authentication.

• Key-oriented goals include key freshness and key secrecy.

Key secrecy also knwon as key authentication means that a shared key is known only by the agents sharing
the key and any mutually trusted third party.
The basic idea of our approach is to make the incremental development of the cryptographic protocol faith-
full to the structure of the protocol as the engineer thinks of it. What we want to do is to identify all the
mechanisms that let a protocol satisfy each safety property, and then combine them by refinement to obtain
the final protocol (Figure 7.2).

129



7.2.1 The Pattern Structure

The properties contained in the figure 7.1 are defined in an abstract way in EVENT B using the notion of
abstract transactions that will be introduced in section 7.3. For each property, a set of mechanisms that
guarantee this property are available described with an EVENT B models. Let P the set of properties and M
the set of EVENT B models of mechanisms. For a certain attacker’s model, a relation “ ” is defined over
the sets P and M :

Definition 1 ∀p, m. p ∈ P ∧m ∈ M : m p iff m implements the property p.

In section 7.3 we will formally introduce how properties and mechanisms are modelled in EVENT B. We
will also see how a mechanism is proved to implement a property.
Let us consider an example of a mechanism using shared key cryptography that implements the authenti-
cation property. The mechanism 1 is contained in the ISO/IEC 9798-2 two-pass unilateral authentication
protocol from the international standard ISO/IEC 9798 Part 2 [54]:

1. B → A : Nb

2. A → B : {Nb, B}KAB

Mechanism 1

In the mechanism 1, B has knowledge of A as her peer entity, we proved that this mechanism implements
the knowledge of peer property in the Dolev-Yao attacker model(see section 7.3). If the nonce Nb is fresh
we can also prove that the mechanism implements the Far-end operative property.
We may need to combine several mechanisms to obtain the desired protocol. We combine two mechanisms
by performing a double refinement of their corresponding EVENT B models. Proofs of the double refine-
ment have to be performed and a new EVENT B model of a new mechanism is then obtained. We will see
in the end of this section how an entire protocol can be obtained by combining several mechanisms.
Combining two mechanisms is not always possible, for example, combining the mechanism 1 with the fol-
lowing mechanism where A has knowledge of B as his peer entity may not be possible.

1. A → B : Na

2. B → A : {Na, B}KAB

Mechanism 2

Let us consider a possible composition of the two previous mechanisms:

1. A → B : Na

2. B → A : {Na, B}KAB
, Nb

3. A → B : {Nb, B}KAB

Mechanism 3

We may think that this new mechanism provides both properties of the composed ones but a possible attack
on the new obtained mechanism is as follows:

1. IA → B : Ni

2. B → IA : {Ni, B}KAB
, Nb

3. IB → A : Nb

4. A → IB : {Nb, A}KAB
, Na

5. IA → B : {Nb, A}KAB

Attack 1

130



Both mechanisms when considered separatly implements the authentication property but when we combine
them, the attacker can use one mechanism to attack the other as shown in the attack 1.
We identified for each mechanisms a set of conditions that guarantee that a combination of this mechanism
with others is possible and a set of proof obligations are generated and have to be discharged.
We also introduce a function R that maps two models m1 and m2 to the set of possible mechanisms obtained
by combinig these two mechanisms in a correct way (proof obligations have been discharged):

Definition 2 ∀m1,m2,m. m1 ∈ M ∧m2 ∈ M ∧m ∈ M : m ∈ R (m1,m2) iff m is a double refinement
of m1 and m2.

The basic idea of our approach is to start with mechanisms that implements generic properties and to com-
bine them by a double refinement process to implement more complex properties as shown in figure 7.1.
We have proved the following theorem that we will use to combine mechnisms:

Theorem 1 ∀m,m1,m2, p1, p2.m ∈ M ∧m1 ∈ M ∧m2 ∈ M ∧ p1 ∈ P ∧ p2 ∈ P :
If m1 p1 ∧m2 p2 ∧m ∈ R (m1,m2) then m p1 ∧ p2

When proving a protocol, we will need to prove only the combination proof obligations and not the proofs
of different mechanism that are done only once and can be reused for different protocols.
The last definition we need to introduce before prensenting the pattern is the instance of a mechanism. We
may need to use several instances of the same mechanism. From an EVENT B point of view two instances
of the same mechanism model are simply two models where variables are renamed so these models have
exactly the same behaviour and satisfy the same properties. Two instances of the same mechanism are
linked with a ∼ relation defined as follows:

Definition 3 ∀m1,m2. m1 ∈ M ∧m2 ∈ M :
m1 ∼ m2 iff m1 and m2 are two instances of the same mechanism.

Theorem 2 ∀m1,m2, p.m1 ∈ M ∧m2 ∈ M ∧ p ∈ P :
If m1 ∼ m2 ∧m2 p then m1 p

Using our design patterns has two advantages:

• To have an efficient refinement (in term of automatic proofs), we need to make the right choices when
choosing abstraction levels and variables during the modelling process. When using the pattern, the
designer of the cryptographic protocol will have to decide only how to combine mechanism to obtain
the desired protocol since the mechanisms are already modelled in EVENT B.

• Proofs of already proved mechanisms are done once and can be reused with different protocols and
proof obligations for combining them are defined.

The pattern is organized in three modules as shown in the table 7.1.

• The LIBRARY module: contains the available properties and the mechanisms that are proved to
implement them.

• The COMPOSITION module: contains the structure of the protocol and shows how it was obtained
by composing the different mechanisms. This module has three clauses:

1. The PROPERTIES clause: contains the properties that the protocol should satisfy.

2. The MECHANISMS clause: contains the instances of the used mechanisms in the protocol.

3. The THEOREM clause: shows the  relation of the instances of mechanisms used in the
protocol.

• The B MODELS clause: contains the EVENT B models of the mechanisms.

The pattern can be used for two purposes, designing new protocols and analysing existing ones. By
analysing a protocol we mean proving it by identifying which component of the protocol guarantees each
property and possibly identify any unnecessary component of the protocol.

131



Table 7.1: The design pattern for cryptographic protocols
ATTACK MODEL DY

LIBRARY COMPOSITION B-MODELS
PROPERTIES
<pi>
. . .
<pj>
MECHANISM
mi pi
. . .
mj  pj

PROPERTIES
<pi>

MECHANISM
mia ∼ mi

THEOREM
mia  pi

mia = B models of the mechanisms

1. First the designer chooses the attacker model, this choice is important since a mechanism may imple-
ment a property in one attacker model but not in an another one.

2. The designer adds a desired property to the clause ”PROPERTIES”of the ”COMPOSITION” module,
the property is chosen among a set of predefined ones contained in the ”LIBRARY” module.

3. A mechanism implementing the added property is chosen among predefined ones in the ”LIBRARY”
and an instance of this mechanism is added to the clause ”MECHANISMS” in the ”COMPOSITION”
module. The corresponding EVENT B model of the new mechanism is added to the ”MODELS”
clause.

4. The designer can perform a composition of two mechanisms. When a double refinement is performed,
the resulting model is added to the clause ”MODELS” and a new mechanism resulting from this
combination is added to the clause ”MECHANISMS” of the ”COMPOSITION” clause.

5. Proofs obligations of the double refinement are generated and have to be performed, if the double
refinement is not possible a different mechanism has to be chosen. Once prrof obligations are dis-
charged the ”THEOREM” clause of the ”COMPOSITION” module is updated.

6. Stop if the desired protocol is obtained or go to step 2.

7.2.2 An Example of the Pattern Application
We applied our design pattern on different cryptographic protocols among which: Blake-Wilson-Menezes
key transport protocol [34], the well known Needham-Schroeder public key protocol [48] and the Shoup-
Rubin key distribution protocol [43]. We will illustrate our approach in this paper on a simplified version 1
of the well known Kerberos protocol [55], this protocol based on the Needham-Schroeder protocol.

1. A → S : A,B, Na

2. S → A : {KAB , B, Na}KAS
, {KAB , A}KBS

3. A → B : {A, TA}KAB
, {KAB , A}KBS

Protocol 1: A simplified version of the Kerberos protocol

The basic protocol involves three parties, the client (A), an appli-
cation server (B) and an authentication sever (S). A secret long
term key KAS is shared between A and S and another key KBS

is shared between B and S. This simplified protocol provides
the following properties:

Property Agent
p1A Key authentication A
p1B Key authentication B
p2A Key freshness A
p3B far-end operative B

Three mechanisms are used to guarantee these propeties. The first one (mechanism 4) is a part of the
ISO/IEC11770 Part2 [53].

132



Table 7.2: The design pattern for Kerberos protocol step1
ATTACK MODEL DY

LIBRARY COMPOSITION B-MODELS
PROPERTIES
<p1A>
<p1B>
<p2A>
<p3B>
. . .
MECHANISM
m4 p1A

m4 p1B

m5 p2A

m6 p3B

. . .

PROPERTIES
<p1A>
<p1B>

MECHANISM
m41 ∼ m4

THEOREM
m41  p1A ∧ p1B

m41 = B models of the mechanism

1. S → A : {KAB , B}KAS

1. S → B : {KAB , A}KBS

Mechanism 4

The second mechanism is similar to mechanism 1 where the server S is involved, but the identity of agent
A in the response message is no longer necessary since reflection attack is not possible anymore.

1. A → S : Na

2. S → A : {Na}KAS

Mechanism 5

The last mechanism uses time stamps as follows:

1. A → B : {A, Ta}KAB

Mechanism 6

We present here how the pattern is applied, but due to lack of space we will skip the EVENT B models, in
section 7.3 contains the EVENT B model of one mechanism taken as an example. Mechanisms are intro-
duced one by one in the pattern and proofs of double refinement are generated and discharged:

We emphasize that this simplified version of Kerberos protocol does not satisfy key freshness property for
agent B. In the full Kerberos protocol uses a mechanism of expiration time in the mssag intended to B to
fulfill freshness property and then satisfy the key confirmation property for agent B as shown in figure 7.1.

7.3 Event-B Models of the Mechanisms
We present in this section the EVENT B models of the mechanism1 shown before. Our goal is to prove that
a mechanism implements a certain property and also to identify the proof obligation of correct composition
of this mechanism with others. To prove that a mechanism satisfies a given property we need one abstract
model and two refinement steps:

133



Table 7.3: The design pattern for Kerberos protocol step 2
ATTACK MODEL DY

LIBRARY COMPOSITION B-MODELS
PROPERTIES
<p1A>
<p1B>
<p2A>
<p3B>
. . .
MECHANISM
m4 p1A

m4 p1B

m5 p2A

m6 p3B

. . .

PROPERTIES
<p1A>
<p1B>
<p2A>
MECHANISM
m41 ∼ m4
m51 ∼ m5
m451 ∈ R (m41,m51)
THEOREM
m41  p1A ∧ p1B

m51  p2A

m451  (p1A ∧ p1B) ∧ p2A

m41 = Bmodels
m51 = Bmodels
m451 = Bmodels

Table 7.4: The design pattern for Kerberos protocol step 3
ATTACK MODEL DY

LIBRARY COMPOSITION B-MODELS

PROPERTIES
<p1A>
<p1B>
<p2A>
<p3B>
. . .
MECHANISM
m4 p1A

m4 p1B

m5 p2A

m6 p3B

. . .

PROPERTIES
<p1A>
<p1B>
<p2A>
<p3B>
MECHANISM
m41 ∼ m4
m51 ∼ m5
m451 ∈ R (m41,m51)
m61 ∼ m6
m4561 ∈ R (m451,m61)
THEOREM
m41  p1A ∧ p1B

m51  p2A

m451  (p1A ∧ p1B) ∧ p2A

m4561  ((p1A ∧ p1B) ∧ p2A) ∧ p3B

m41 = Bmodels
m51 = Bmodels
m451 = Bmodels
m61 = Bmodels
m4561 = Bmodels

134



• The first model is the specification, the desired property is stated in an abstract way using the notion
of abstract transaction that will be introduced later in this section. The way a property is expressed in
this first abstract model is common to all the mechanisms.

• The second model is the implementation, we exhaustively add all details used by the mechanism to
guarantee the desired property stated in the previous model. The RODIN tool will then automatically
generate proof obligations by respect to the property stated in the abstract model. We obtain then
assertions on the attacker knowledge to preserve the safety properties.

• Third model: we model the behaviour of the attacker. The attacker knowledge is modelled and used
to prove the assertions identified in the previous refinement. We introduced attacker’s knowledge in
a different refinement so we can apply several attacker’s behaviours to see if we still can prove safety
properties. Note that models corresponding to different attacker behaviours are already defined and
are directly applied to the mechanism model.

7.3.1 Abstract Model
The figure 7.3 shows an abstract view of a two-pass unilateral authentication protocol where agent A chal-
lenges agent B and waits for the response. After receiving the answer, agent A should be able to authenticate
the source of the message. At this abstraction level, we introduce the notion of agent, that is common to all
kinds of cryptographic protocols, other notions like nonces, timestamps or cryptographic keys are specific
to each kind of protocols and will be introduced in later refinements.
To model the different properties, the pattern is based on the notion of abstract transactions. An abstract
transaction is a session of the protocol performed by one of the agent involved in the protocol run. In
some cryptographic protocols, nonces are used to identify each session or protocol run. Intuitively, each
transaction of the abstract model will correspond, in this case, to a fresh nonce (or to a timestamp in other
protocols) in the concrete model. A transaction has several attributes and, before giving these attributes, we
need to introduce the basic sets we will use in our model:

T : is the set of abstract transactions;

Agent : is the set of agents;

MSG : is the set of possible messages among agents;

I ∈ Agent : the intruder.

A

B
Answer

Intruder
challenge

Entity 
authentication

Figure 7.3: Abstract model

Note that for most protocols, even if there is more than one dishonnest agent in the system, it suffices to
consider only one attacker that will combine the abilities and knowledge of all the other dishonnest agents.
There are several definitions in the literature of entity authentication in cryptographic protocols, Syverson
and van Oorschot [52] define entity authentication as: “A believes B recently replied to a specific challenge.”
This property is obtained by combining two generic properties: peer knowledge and far-end operative. In
this first model we focus on peer knowledge property. To be able to model it, we introduce variables that
model each protocol run or session attributes (one abstract transaction in the abstract model). An abstract

135



transaction has a source (t src) that is the agent that initiated the transaction and a believed destination
(t bld dst) that is the believed destination agent. A running transaction is contained in a set trans . When a
transaction terminates it is added to a set end .

trans ⊆ T
end ⊆ trans
t src ∈ trans→ Agent
t bld dst ∈ trans→ Agent

answer ⊆ MSG
answer src ∈ answer → Agent
answer dst ∈ answer → Agent

A’s challenge and B’s answer (figure 7.3) are also modelled using new variables. The answer from the
destination agent is transmitted via a channel (answer ). A message from this channel has a source and a
destination (answer src, answer dst). The same variable are added for modelling the challenge.
When A sends a challenge to B, he waits for the answer. Several answers may arrive and A will choose one
of them. If the protocol is correct by regard to peer knowledge property, agent A should be able to choose
the “appropriate” answer among the ones he received. The source of the chosen message is then considered
as the real destination, we store it in a new variable t dst that has the same type as t bld dst . In this case,
to prove peer knowledge, we need to prove that both variables are equal when a transaction terminates.

Theorem 3 ∀t·t ∈ end ∧ t src(t) 6= I ⇒ t dst(t) = t bld dst(t)

We tried first to prove the property without the condition t src(t) 6= I but it was not possible to prove it
because, since the attacker is sending random messages, he may be mislead by his own messages when he
behaves as an honnest agent, we modified the property and we could then prove it.
We emphasise that the goal of this first abstract model is to state the property without explaining how the
protocol manage to satisfy it.

Events

At the beginning of a transaction, the agent A sets the value of the variable t bld dst to some agent B, adds
the transaction t to the set trans and sends the challenge to agent B. Agent B answers by sending the answer
to A, the variable answer src is set to the value B. When an agent A receives an answer from an agent B,
he sets the variable t dst to the value B contained in answer src. Thus, the variable t dst contains the real
transaction destination. The value of this variable is not set in the Answer event, when the agent B sends
the message because many agents may answer to agent A’s request and the real transaction destination
is known only once A receives answer messages and chooses one of them. Depending of the protocol
structure, the agent A should know, if the source of the message he received is the trusted destination of the
transaction to guarantee the authentication of the protocol. But in this abstract model, we add the guard 8
that guarantees this property.

EVENT End ANY
t, A, B, Amsg

WHERE
grd1 : t ∈ trans \ end
grd2 : A ∈ Agent ∧ B ∈ Agent ∧ A 6= B
grd3 : t src(t) = A
grd4 : Amsg ∈ Answer
grd6 : msg src(Amsg) = B
grd7 : msg dst(Amsg) = A
grd8 : msg src(Amsg) = t bld dst(t)

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

We also add in this model the attacker event. In this event the attacker can add a message with randomly
chosen attributes to the variables challenge and answer. Another event modelling the loss of messages is
added. Messages are removed from the channels challenge and answer randomly. This loss can be caused
by a malicious attacker action or by an error in the communication channel.

136



7.3.2 First Refinement

The goal of this first refinement is to understand how the property stated in the previous model is achieved,
thus, the corresponding details of the modelled mechanism messages are exhaustively added. Cryptographic
keys are introduced in this refinement. For example shared keys are modelled as follows:

KEY Set of all pair keys
KEY A ∈ KEY → Agent the first owner agent
KEY B ∈ KEY → Agent the second owner agent

We also need to model nonces at this refinement level. At each protocol run, an agent generates a new nonce
and uses it to identify the current session. In this case, each abstract transaction corresponds to a freshly
generated nonce. When an agent initiates a new session, he chooses a transaction t that is not in the set
trans just like a freshly generated nonce. Instead of adding a new type for nonces, we simply continue to
use transactions.
In the step 2 of the mechanism 1 , we need the nonce Na , the identity of the agent and the key used for the
encryption.

answer Na ∈ answer → T : the encrypted nonce
answer KAB ∈ answer →KEY
answer A ∈ answer → Agent : the agent identity

In the abstract model, we use the guard 8 in the EVENT End to prove authentication, with this guard agent
A could know if the message is authentic or not. In cryptographic protocols, it is not possible to perform
such tests but the structure of the answer message itself guarantees authentication. Accordingly, the guard
8 in the EVENT End have to be substituted by a condition over the received answer message content1.

In general, accepted msg be the predicate that is
true when a message is accepted by the receiving
agent. The predicate is directly derived from the
protocol itself.
The EVENT End of the pattern becomes:

EVENT End ANY
t, A, B, Amsg

WHERE
⊕ grd8 : accepted msg(Amsg)
	 grd8 : answer src(Amsg) = B

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

7.3.3 Second refinement: attacker’s knowledge

To be able to prove properties such as secrecy and authentication on a protocol, we have to be able to model
the knowledge of the attacker. To model the knowledge of the attacker, it is necessary to know exactly
what the attacker is able to do. One popular model for attacker’s behaviour is the Dolev-Yao model. This
refinement models all the options the attacker has in this attacking model and can be reused for different
protocols. The attacker can then try to obtain nonces and keys from the content of the communication
channel. The attacker may also have an initial knowledge, or a knowledge he may acquire by means other
than analysing the communication channel content. To model all these options, we use variables that contain
the crucial information the attacker can obtain. Because of the typing constraints in the EVENT B, we use
one variable for each information type : N Mem for nonces and K Mem for each type of keys keys.

N Mem ⊆ P(T )
K Mem ⊆ P(Key)

The attacker can also use fragments of encrypted messages contained in the communication channel, we
model the set of fragments available to the attacker using a variable FRAG . In the case of mechanism 1,
the fragment has the following structure:

1⊕ and 	 are respectively the added and removed guards compared to the refined event.

137



FRAG ⊆MSG
FRAG Na ∈ FRAG→ T
FRAG KAB ∈ FRAG→KEY
FRAG A ∈ FRAG→Agent
FRAG Src ∈ FRAG→Agent

We need to answer two issues: What is in the variables N Mem and K Mem? How does the intruder use
the knowledge contained in these variables ? The answer of the second issue is immediate, the event Attack
(for a challenge or an answer) is refined in a way where the attacker uses only transactions or keys that are
in his memory and also fragments of encrypted messages contained in the variable FRAG.

The event Attack is refined into several concrete
events that include all the options, we give here
one event that models the attacker when using
transactions in his memory (without fragment of
encrypted messages):

EVENT Attack Answer ANY
set t, set k, A, Amsg

WHERE
⊕ grd7 : set t ⊆ N Mem
⊕ grd8 : set k ⊆ K Mem

THEN
act1 : ⊕MSG VAR

END

The answer of the first issue: what is in the attacker memory ? depends from the chosen attacker model. In
the Dolev-Yao one, attacker has full control of the communication channels. In our model, we have already
added events where messages are lost no matter if it is done by the attacker or not. And we didn’t limit the
number of messages the attacker can send. To model the fact that an attacker decrypts parts of the message,
if he has the appropriate key, we added the following event where the attacker uses keys he knows to decrypt
fragments of messages, we do this exhaustively with all channels. Events, that models options the attacker
has, can be added or removed depending from the chosen attacking model.
To achieve the refinement, we need to prove that the modelled attacker’s knowledge preserves the desired
property. We use the RODIN tool to generate a carachterization of the attacker’s knowledge (variables
N Mem , K Mem and FRAG). In the case of the mechanism 1, we used the RODIN tool and we gener-
ated and proved the two following theorems:

Theorem 4

∀K, A, B ·

K ∈ K MEM ∧

K ∈ dom(KEY A) ∧

¬A = I ∧

((KEY A(K) = A ∧KEY B(K) = B) ∨

(KEY A(K) = B ∧KEY B(K) = A))

⇒

B = I

This first theorem states that to preserve the desired property the attacker should only posses keys he share
with another agent. The second theorem is as follows:

Theorem 5

∀A, B, K, frag·

frag ∈ FRAG ∧

FRAG A(frag) = A ∧

FRAG Key(frag) = K ∧

((KEY A(K) = A ∧KEY B(K) = B) ∨

(KEY A(K) = B ∧KEY B(K) = A)) ∧

¬A = I ∧

K ∈ dom(KEY A)

⇒

B = FRAG Src(frag)

138



Intuitively this theorem states that if a fragment is encrypted with a key owned by two agents and the identity
of one of these agent is in the field FRAG A then the source of this fragment is the other agent. These
two theorems are very important for the composition of mechanisms. If this mechanism is composed with
another one we need to prove that the fragments of the same type generated by the other mechanism satisfy
these theorems. This is how proof obligations of mechanisms composition are generated. When we tried to
compose mechanisms 1 and 2 we could not prove these theorems and we could generate the attack 1.

7.4 Conclusion
We have introduced an Event-B-based design pattern for cryptographic protocols and we have applied it on
three different protocols. Several properties were proved on these protocols, user-oriented and key-oriented
properties. Less than 10% of the proofs of the models were interactive. Patterns facilitate proof process by
reusing partially former developments; we have not yet designed new cryptographic protocols and it remains
to develop other case studies by applying patterns. Like design patterns, proof-based patterns are based on
real cases; they should help the use of refinement and proof techniques; it is then clear that specific tools
should be developed and further works should be carried out using refinement for discovering new patterns.
As a perspective of our work, we want to model more mechanisms and define a plugin of the RODIN tool
that implements this pattern. It is also necessary to address questions on extensions of Dolev-Yao models.

139



140



Chapter 8

Self-healing systems

141



CONTEXT COLOR
SETS

color
CONSTANTS

clr1, clr2, clr3
AXIOMS

axm1color = {clr1, clr2, clr3}
axm2clr1 6= clr2
axm3clr1 6= clr3
axm4clr2 6= clr3

END

CONTEXT RINGSETS
N

CONSTANTS
n

AXIOMS
axm1n ∈ N��N
axm2∀s·s ⊆ n[s] ∧ s 6= ∅⇒N ⊆ s
axm3finite(N)

THEOREMS thm1(∃x, y ·x ∈ N ∧ y ∈ N ∧ x 6= y)⇒ id(N) ∩ n = ∅
thm2∀x, s·s ⊆ (n \ {x 7→ n(x)})[s]⇒ s = ∅

END

CONTEXT RING1
EXTENDS ring
AXIOMS

axm1∃x, y ·x ∈ N ∧ y ∈ N ∧ x 6= y
END

MACHINE one− shot
SEES ring, color
VARIABLES

col
INVARIANTS

inv1col ∈ N → color
EVENTS

EVENT INITIALISATION
BEGIN
act1col :∈ N → color

END
/quadEVENT stableANY

f WHERE
grd1f ∈ N → color grd2∀x·f(x) /∈ f [(n ∪ n−1)[{x}]]WHEN
act1col := fEND

END

142



MACHINE rules
REFINES one− shot
SEES ring1, color
VARIABLES

col, c
INVARIANTS

inv1c ∈ N → colorTHEOREMS
EVENTS

EVENT INITIALISATION
BEGIN
act1col, c : |(col′ ∈ N → color ∧ c′ ∈ N → color ∧ col′ = c′)

END
EVENT stableREFINES stableWHEN

grd1∀x·c[{x}] 6= c[(n ∪ n−1)[{x}]]
grd2∀x·c(x) 6= c(n−1(x)) ∨ c(x) = c(n(x))

WITNESSES
ff = c

WHEN
act1col := c

END
EVENT rule1WHICHIS convergent
ANY

x
clr

WHERE
grd1c[{x}] = c[(n ∪ n−1)[{x}]]
grd2clr /∈ c[{x}]

WHEN
act1c(x) := clr

END
EVENT rule2WHICHIS convergent
ANY

x
clr

WHERE
grd1c(x) = c(n−1(x))
grd2c(n(x)) 6= c(x)
grd3clr 6= c(x)
grd4clr 6= c(n(x))

WHEN
act1c(x) := clr

END
VARIANT

card({x|c(x) = c(n−1(x))})END

143



144



Bibliography

[1] Boston Scientific: Pacemaker system specification, Technical report, Boston Scientific, 2007.

[2] J. R. Abrial. Using design patterns in formal devlopments example: A mechanical press controler.
journÃ c©e scientifique du ppf iaem transversal - dÃ c©veloppement incrÃ c©mental et prouvÃ c© de
systÃ¨mes, april 2006.

[3] J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University Press, 1996.

[4] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2009. Forthcoming book.

[5] Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts and Case Studies,
pages 33–140. Springer, 2007. See [?].

[6] Méry D. Cansell D. and Joris Rehm. Formal Specification and Development in B, chapter Time Con-
straint Patterns for Event B Development, pages 140–154. Lecture Notes in Computer Science. Springer
US, 2006. ISSN 0302-9743.

[7] Andreas Furst. Design patterns in event-b and their tool support. Master’s thesis, ETH Zurich, 2009.

[8] Aaron Hesselson. Simplified Interpretations of Pacemaker ECGs. Blackwell Publishers, 2003. ISBN
1405103728.

[9] David B. Johnson and David A. Maltz. Mobile Computing, volume 353 of The International Series in
Engineering and Computer Science, chapter Dynamic Source Routing in Ad Hoc Wireless Networks,
pages 153–181. Springer US, 1996. ISSN 0893-3405.

[10] Jacques Julliand and Olga Kouchnarenko, editors. B 2007: Formal Specification and Development
in B, 7th International Conference of B Users, Besançon, France, January 17-19, 2007, Proceedings,
volume 4355 of Lecture Notes in Computer Science. Springer, 2006.

[11] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones, Murali Sitaraman, Douglas R. Smith, and
Aaron Stump. Roadmap for enhanced languages and methods to aid verification. In Fifth Intl. Conf.
Generative Programming and Component Engineering (GPCE 2006), pages 221–235. ACM, October
2006.

[12] Charles J. Love. Cardiac Pacemakers and Defibrillators. Landes Bioscience Publishers, 2006. ISBN
1-57059-691-3.

[13] Jaakko Malmivuo. Bioelectromagnetism. Oxford University Press, 1995. ISBN 9780195058239.

[14] Alfons F. Sinnaeve S. Serge Barold, Roland X. Stroobandt. Cardiac Pacemakers Step by Step. Futura
Publishing, 2004. ISBN 1-4051-1647-1.

[15] ProB Tool. The prob animator and model checker for the b method. http://www.stups.uni-
duesseldorf.de/ProB/overview.php/.

[16] Jean-Raymond Abrial. The B book - Assigning Programs to Meanings. Cambridge University Press,
1996.

145



[17] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2009.

[18] Projet ANR-RIMEL. Développement d’algorithmes répartis. Livrable RIMEL, LORIA, Jan-
vier/Février 2008.

[19] Projet ANR-RIMEL. Intégration du temps dans le développement incrémental prouvé. Livrable
RIMEL, LORIA, Juillet 2008.

[20] Projet ANR-RIMEL. Proof-based design patterns. Livrable RIMEL, LORIA, Juillet 2008.

[21] Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages. EATCS Textbook
in Computer Science. Springer, 2007.

[22] Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts and Case Stud-
ies, pages 33–140. Springer, 2007. See [67].

[23] ClearSy. BART project. http://www.clearsy.com, 2008.

[24] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones, Murali Sitaraman, Douglas R. Smith, and
Aaron Stump. Roadmap for enhanced languages and methods to aid verification. In Fifth Intl. Conf.
Generative Programming and Component Engineering (GPCE 2006), pages 221–235. ACM, October
2006.

[25] J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University Press, 1996.

[26] J.-R. Abrial. Modeling in Event-B: System and Software Engineering, chapter Modelling the press.
Cambridge University Press, 2009.

[27] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2009. Forthcoming book.

[28] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantiation of dis-
crete models: Application to event-b. Fundam. Inform., 77(1-2):1–28, 2007.

[29] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A pattern language: towns, buildings,
construction. Oxford University Press, 1977.

[30] Giampaolo Bella. Inductive verification of smart card protocols. J. Comput. Secur., 11(1):87–132,
2003.

[31] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: the three party case. In
STOC ’95: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pages
57–66, New York, NY, USA, 1995. ACM.

[32] Nazim Benaı̈ssa, Dominique Cansell, and Dominique Méry. Integration of security policy into system
modeling. In Julliand and Kouchnarenko [44], pages 232–247.

[33] Nazim Benaissa. Modelling attacker’s knowledge for cascade cryptographic protocols. In ABZ ’08:
Proceedings of the 1st international conference on Abstract State Machines, B and Z, pages 251–264,
Berlin, Heidelberg, 2008. Springer-Verlag.

[34] Simon Blake-Wilson and Alfred Menezes. Entity authentication and authenticated key transport pro-
tocols employing asymmetric techniques. In Proceedings of the 5th International Workshop on Security
Protocols, pages 137–158, London, UK, 1998. Springer-Verlag.

[35] Dominique Bolignano. Integrating proof-based and model-checking techniques for the formal verifi-
cation of cryptographic protocols. In Alan J. Hu and Moshe Y. Vardi, editors, CAV, volume 1427 of
Lecture Notes in Computer Science, pages 77–87. Springer, 1998.

146



[36] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to
formal software design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci., 183:39–55,
2007.

[37] Dominique Cansell and Dominique Méry. The EVENT B Modelling Method: Concepts and Case
Studies, pages 33–140. Springer, 2007. see.

[38] Dominique Cansell and Dominique Méry. Incremental parametric development of greedy algorithms.
Electr. Notes Theor. Comput. Sci., 185:47–62, 2007.

[39] Dominique Cansell, Dominique Méry, and Joris Rehm. Time constraint patterns for event b develop-
ment. In Julliand and Kouchnarenko [44], pages 140–154.

[40] Anish. Mathuria Collin. Boyd. Protocols for Authentication and Key Establishment. 2003.

[41] D. Dolev and A. Yao. On the security of public key protocols. Information Theory, IEEE Transactions
on, 29(2):198–208, Mar 1983.

[42] E. Gamma, R. Helm, R. Johnson, R. Vlissides, and P. Gamma. Design Patterns : Elements of
Reusable Object-Oriented Software design Patterns. Addison-Wesley Professional Computing, 1997.

[43] Rob Jerdonek, Peter Honeyman, Kevin Coffman, Jim Rees, and Kip Wheeler. Implementation of
a provably secure, smartcard-based key distribution protocol. In Jean-Jacques Quisquater and Bruce
Schneier, editors, CARDIS, volume 1820 of Lecture Notes in Computer Science, pages 229–235.
Springer, 1998.

[44] Jacques Julliand and Olga Kouchnarenko, editors. B 2007: Formal Specification and Development
in B, 7th International Conference of B Users, Besançon, France, January 17-19, 2007, Proceedings,
volume 4355 of Lecture Notes in Computer Science. Springer, 2006.

[45] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones, Murali Sitaraman, Douglas R. Smith, and
Aaron Stump. Roadmap for enhanced languages and methods to aid verification. In Fifth Intl. Conf.
Generative Programming and Component Engineering (GPCE 2006), pages 221–235. ACM, October
2006.

[46] Frank Thomson Leighton and Silvio Micali. Secret-key agreement without public-key cryptography.
In CRYPTO ’93: Proceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology, pages 456–479, London, UK, 1994. Springer-Verlag.

[47] Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using fdr. In Tiziana
Margaria and Bernhard Steffen, editors, TACAS, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer, 1996.

[48] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

[49] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow), vol-
ume 828 of Lecture Notes in Computer Science. Springer, 1994.

[50] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Com-
puter Security, 6:85–128, 1998.

[51] Project RODIN. The rodin project: Rigorous open development environment for complex systems.
http://rodin-b-sharp.sourceforge.net/.

[52] Paul F. Syverson and Paul C. Van Oorschot. On unifying some cryptographic protocol logics. In SP
’94: Proceedings of the 1994 IEEE Symposium on Security and Privacy, page 14, Washington, DC,
USA, 1994. IEEE Computer Society.

[53] ISO. Information technology - Security techniques - Key management - Part 2: Mechanisms Using
Symmetric techniques ISO/IEC 11770-2, 1996. International Standard.

147



[54] ISO. Information technology - Security techniques - Entity authentication - Part 2: Mechanisms Using
Symmetric Encipherment Algorithms ISO/IEC 9798-2, 2nd edition, 1999. International Standard.

[55] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for computer networks.
IEEE Communications magazine, 32(9):33-38, September 1994.

[56] http://media.summitmedicalgroup.com/media/db/ relayhealth-images/nodes.jpg.

[57] A Reseach and Development Needs Report by NITRD. High-Confidence Medical Devices : Cyber-
Physical Systems for 21st Century Health Care. http://www.nitrd.gov/About/MedDevice-FINAL1-
web.pdf.

[58] J.-R. Abrial. B#: Toward a Synthesis Between Z and B. In D. Bert and M. Walden, editors, 3nd
International Conference of B and Z Users - ZB 2003, Turku, Finland, Lectures Notes in Computer
Science. Springer, June 2003.

[59] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2009. Forthcoming book.

[60] J.-R. Abrial and D. Cansell. Click’n prove: Interactive proofs within set theory. In TPHOL 2003,
pages 1–24, 2003.

[61] R. Back. On correct refinement of programs. Journal of Computer and System Sciences, 23(1):49–68,
1979.

[62] S. Serge Barold, Roland X. Stroobandt, and Alfons F. Sinnaeve. Cardiac Pacemakers Step by Step.
Futura Publishing, 2004. ISBN 1-4051-1647-1.

[63] Dines Bjorner. Software Engineering 1 Abstraction and Modelling. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006. ISBN: 978-3-540-21149-5.

[64] Dines Bjorner. Software Engineering 2 Specification of Systems and Languages. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. ISBN: 978-3-540-21150-1.

[65] Dines Bjorner. Software Engineering 3 Domains, Requirements, and Software Design. Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2006. ISBN: 978-3-540-21151-8.

[66] Dines Bjorner. DOMAIN ENGINEERING Technology Management, Reserach and Engineering, vol-
ume 4 of COE Research Monograph Series. JAIST, 2009.

[67] Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages. EATCS Textbook
in Computer Science. Springer, 2007.

[68] Boston Scientific Boston Scientific: Pacemaker system specification, Technical report. 2007.

[69] Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts and Case Stud-
ies, pages 33–140. Springer, 2007. See [67].

[70] Dominique Cansell, Dominique Méry, and Joris Rehm. Formal Specification and Development in B,
chapter Time Constraint Patterns for Event B Development, pages 140–154. Lecture Notes in Computer
Science. Springer US, 2006. ISSN 0302-9743.

[71] ClearSy, Aix-en-Provence (F). B4FREE, 2004. http://www.b4free.com.

[72] O. Grumberg E. M. Clarke and D. Peled. Model Checking. MIT Press, 1999. ISBN 978-0262032704.

[73] Kenneth A. Ellenbogen and Mark A. Wood. Cardiac Pacing and ICDs. 4th Edition, Blackwell, 2005.
ISBN-10 1-4051-0447-3.

[74] E. Gamma, R. Helm, R. Johnson, R. Vlissides, and P. Gamma. Design Patterns : Elements of
Reusable Object-Oriented Software design Patterns. Addison-Wesley Professional Computing, 1994.

[75] B. S. Goldman, E. J. Noble, J. G. Heller, and D. Covvey. The pacemaker challenge. CMAJ,
110(1):28–31, 1974.

148



[76] Artur Oliveira Gomes and Marcel Vinicius Medeiros Oliveira. Formal specification of a cardiac pac-
ing system. In FM 2009, pages 692–707, 2009.

[77] Aaron Hesselson. Simplified Interpretations of Pacemaker ECGs. Blackwell Publishers, 2003. ISBN
978-1-4051-0372-5.

[78] C.A.R. Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar. The verified software initia-
tive: A manifesto. ACM Comput. Surv., 41(4):1–8, 2009.

[79] Tony Hoare. The verifying compiler: A grand challenge for computing research. J. ACM, 50(1):63–69,
2003.

[80] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, 2002.

[81] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones, Murali Sitaraman, Douglas R. Smith, and
Aaron Stump. Roadmap for enhanced languages and methods to aid verification. In Fifth Intl. Conf.
Generative Programming and Component Engineering (GPCE 2006), pages 221–235. ACM, October
2006.

[82] Insup Lee, George J. Pappas, Rance Cleaveland, John Hatcliff, Bruce H. Krogh, Peter Lee, Harvey
Rubin, and Lui Sha. High-confidence medical device software and systems. Computer, 39(4):33–38,
2006.

[83] Michael Leuschel and Michael Butler. ProB: A Model Checker for B, pages 855–874. LNCS. Springer,
2003.

[84] Charles J. Love. Cardiac Pacemakers and Defibrillators. Landes Bioscience Publishers, 2006. ISBN
1-57059-691-3.

[85] Hugo Daniel Macedo, Peter Gorm Larsen, and John Fitzgerald. Incremental Development of a Dis-
tributed Real-Time Model of a Cardiac Pacing System Using VDM, pages 181–197. LNCS. Springer,
Los Alamitos, CA, USA, 2008.

[86] Jaakko Malmivuo. Bioelectromagnetism. Oxford University Press, 1995. ISBN 0-19-505823-2.

[87] Valerio Panzica La Manna, Andrea Tommaso Bonanno, and Alfredo Motta. Poster on a simple pace-
maker implementation. ACM, May 2009.

[88] Writing Committee Members, Andrew E. Epstein, John P. DiMarco, Kenneth A. Ellenbogen, III
Estes, N.A. Mark, Roger A. Freedman, Leonard S. Gettes, A. Marc Gillinov, Gabriel Gregoratos,
Stephen C. Hammill, David L. Hayes, Mark A. Hlatky, L. Kristin Newby, Richard L. Page, Mark H.
Schoenfeld, Michael J. Silka, Lynne Warner Stevenson, and Michael O. Sweeney. ACC/AHA/HRS
2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: Executive Summary:
A Report of the American College of Cardiology/American Heart Association Task Force on Practice
Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implanta-
tion of Cardiac Pacemakers and Antiarrhythmia Devices): Developed in Collaboration With the Amer-
ican Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation, 117(21):2820–
2840, 2008.

[89] ProB. The ProB animator and model checker for the B method. http://www.stups.uni-
duesseldorf.de/ProB/overview.php/.

[90] Project RODIN. Rigorous open development environment for complex systems. http://rodin-b-
sharp.sourceforge.net/, 2004. 2004–2007.

[91] Joris Rehm. Pattern Based Integration of Time applied to the 2-Slots Simpson Algorithm. In Integra-
tion of Model-based Formal Methods and Tools in IFM’2009, Düsseldorf Allemagne, 02 2009.

[92] J. Woodcock and R. Banach. The verification grand challenge. 13(5):661–668, 2007.

[93] Jim Woodcock. First steps in the verified software grand challenge. IEEE Computer, 39(10):57–64,
2006.

149


