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Avertissement
The following report has been written by Nazim Benaı̈ssa and Dominique
Méry and more precisely:

• The chapter THE parametric/generic PATTERN reuses results pub-
lished in two papers written by Dominique Cansell, Paul Gibson and
Dominique Méry.

• The chapter THE call as event PATTERN has been completely written
by Dominique Méry from the paper [63].

• The chapter THE access control PATTERN has been written by Nazim
Benaı̈ssa and Dominique Méry from previous publications.

• The chapter THE cryptographic PATTERN has been wrioten by Nazim
Benaı̈ssa.

• The introduction and the conclusion are written by Dominique Méry.
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1.1 Motivations
Designers can now justify design decisions (and the claims for their designs of being high quality) based on
the patterns that they have (or have not) applied. In fact, much like the quality of code can easily be judged
by a quick glance at whether certain coding standards have been followed, so the quality of a design can
now be judged based on the use of well-understood patterns (and architectures) [43]. Good software design
tools have given rise to the notion of design patterns - where expertise is wrapped up in re-usable form and
support provided for the (semi-automated) application of these patterns. This now leads us on to validation
and verification where we see analogous concepts:

• Validation and verification is difficult and refinement is a tool for supporting the engineering of correct
systems through V & V. However, this tool - like many others - can only be effective if used in an
expertly manner. Such expertise should be packaged for re-use (where possible) in the form of design
patterns.

• These patterns should be targeted at formal verification and rigorous validation, to provide higher-
level tools whose use will justify claims for security and trustworthiness. Of course, building such
patterns will require theoretical innovations.

We think that formal design patterns or proof-based design patterns will play a vital role in any future
measurements with respect to claims of security and trustworthiness based on verification. The key point is
that proof-based design patterns have a very important feature: they are based on an objective way to ensure
the validity of the resulting objects. The intention is to capture proof-based information about the system
under development.
The concept of design pattern [43] is well known in Object Oriented Technology. The main idea is to
have some sort of reproducible engineering micro-design that the software designer can use in order to
develop new pieces of software. Abrial has defined (and proved) two formal patterns, where the second one
happens to be a refinement of the first one and he has derived them from a study of a mechanical press. The
mechanical press case study was proposed by INRS, which is a national institute on safety and security:
two patterns emerge from the study and the action/reaction paradigm has been implemented in such a
way. As a matter of fact, one very often encounters such patterns in the development of reactive systems,
where several chains of reactions can take place between an environment and a software controller, and
vice-versa.Second, the patterns are then used many times in the development of a complete reactive system
where several pieces of equipment interact with a software controller. It results in a systematic construction
made of six refinements. The entire system is proved completely automatically. The relationship between
the formal design patterns and the formal development of the problem at hand will be shown to correspond
to a certain form of refinement.
Abrial [8] and the project think that such an approach to formal developments can be generalized fruitfully
to other patterns. It results in very concise and systematic developments. Let us detail the questions to be
addressed in a system engineering approach using proof and refinement.
G. Polya [68] describes a set of techniques or recipes which can be used to solve problems. The different
steps advocated by Polya can be summarised as follows. A first step is the understanding the problem
and list the data, conditions on the data, the unknown elements and the feasibility of the requirements
listed in the statement of the problem. It is clearly important to identify the redundancy and the possible
inconsistencies; elicitation of requirements is clearly a very important step and it can be driven following
an incremental and progressive methodology based on proof checking. The methodology can be based
on drawings or graphical notations, which should be suitable and it is then clear that the role of graphical
notations is central. Our expertise is on the definition of graphical notations which are sound abstractions
of the systems under development as for instance the predicate diagrams [20, 39, 29].
Predicate diagrams constitute a framework which can be combined with textual notations for event-based
systems and which can be used to help in the statement of the problem. However, the link between the
problem and the first model remains to be elicitated; the notion of view is more appropriate than model
and the model is the global integration of the different views. Following the thesis of Polya, it appears
that the link between the data and the unknown should be defined in an appropriate way. However, Polya
mentions the use of auxiliary problems or sub-problems and it leads us to discover new solutions to the given
sub-problems or to reuse existing problems having already been solved: the identification of an already
seen problem is something that is not so easy to carry out. The identification of a new problem with
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a given existing (well-understood) problem is possible in a cognitive way but is not yet so obvious in a
mathematical and logical framework. The identification of a problem is the question to be addressed; where
the classification of the problem seems to be related to the solution and to the statement of the solution. For
instance, the problem of searching something in a collection of data or the problem of computing a fixed-
point over a structure can be formalised in a mathematical way and an algorithmic solution can be found;
the problem of modelling the greedy method is more complex to solve because there are a lot of greedy
algorithms which use the same principle and the question is to be able to provide a general framework for
solving this problem on a special case. We should be able to produce a plan of the solution where it is
made up of event-based models related by the refinement relationship and of logico-mathematical theories
on data. The question is then to check if a problem is identical to another problem or if a problem is a
weaker or a stronger instance. Clearly, refinement plays the role of a link between problems as long as we
are able to attach a model to a problem. Moreover, the model should be as general as possible and reusable.
The question of the analogy among problems is also a very important issue and it is related to an adaptation
of the refinement.
The progress should be on the coding or the formalisation of development and design patterns have shown
their adequacy in software engineering: the weak point is the link to the proof and verification engineering.
As demonstrated by our partner from ClearSy, the B method provides a framework for expressing models
smartcard security policies (EAL5+ level / Common Criteria) and it is clearly a point to integrate to our
patterns. The main question is to be able to capture justifications of the adequacy to safety and security
requirements.
Concepts integrating proofs, should be introduced to guarantee correctness criteria (safety and security)
in a refinement-based development process. In previous works, we have already identified techniques for
paramatrised development of B models; formal verification of tamper-evident storage for e-voting [22]
and the incremental parametric development of greedy algorithms [27], are applying a technique jointly
developed with J.-R. Abrial [9]. The general approach is based on the development of case studies followed
by an identification of possible patterns.

1.2 Summary of the report
The current report gathers patterns identified during the last 18 months of the RIMEL project. Let us
recall that we had no formal definition of what is a proof-based design pattern and we follow a general
methodology including an identification phase, a definition (or statement) phase and a replay phase. One
should also warn on the implementation phase of the pattern and it is related to the target platform. We
have to targets platforms: the RODIN platform [69] which is provided freely by the RODIN project and
the Atelier B platform [31] which will be freely available. Four patterns are presented in the document and
have not the same degree of generality:

• The parametric/generic pattern provides a way to instantiate Event B development and we apply it
on two very different case studies: the design of greedy algorithms [27] and the design of e-voting
algorithms [22, 21]. The technique is very close to the instantiation of discrete models due to Abrial
and Hallestede [9] and we had worked partially with J.-R. Abrial on this technique.

• The call as event pattern is based on the relation between an event and the call of a procedure; the
relation was first introduced in a paper [28] and has been formalised in [63].

• The access control pattern is very close to the parametric/generic pattern but it relates access control
models and secure systems.

• The cryptographic pattern is probably the most recent pattern; it provides a way to handle attacker
models like Dolev-Yao [38] and to take into account the attacker model when developing crypto-
graphic protocols.

The three phases for each pattern provides a way to validate them but it remains to implement these patterns.
Bart [33] provides a set of transformations for deriving an implementation in the Aterlier B platform and
in the (classical) B method. We have not yet studied carefully how Bart can be used to implement our
transformations but it has already been used by Siemens to develop new applications based on previously
defined applications. A set of rules is necessary and it is then clear that these current rules are proprietary
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and should be developed by each developer according to needs. In the next chapters, we describe each
pettern and in the final chapter we will conclude on the limits of the work and the perspectives of these
initial results.
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The Event B method provides a general framework for modelling both data structures and algorithms. B
models are validated by discharging proof obligations ensuring safety properties. We address the problem of
development of greedy algorithms using the seminal work of S. Curtis; she has formalised greedy algorithms
in a relational calculus and has provided a list of results ensuring optimality results. Our first contribution
is a re-modelling of Curtis’s results in the Event B framework and a mechanical checking of theorems
on greedy algorithms The second contribution is the reuse of the mathematical framework for developing
greedy algorithms from Event B models; since the resulting Event B models are generic, we show how
to instantiate generic Event B models to derive specific greedy algorithms; generic Event B developments
help in managing proofs complexity. Consequently, we contribute to the design of a library of proof-based
developed algorithms.

2.1 Genericity and refinement in Event-B: a formal design pattern
The Event-B method provides a framework for developing generic models of systems, where a problem can
be defined using parameters to be instantiated. Intuitively, this means that we are able to relate the current
problem to be solved to an abstract problem solved by an already existing generic B development (theory).
Following our approcah, in the existing generic solution we must find the mathematical framework that
is common to both problems, together with some constants which need to be instantiated. Consequently,
in formulating the solution to the new problem the main work is to check that the instantiated parameters
satisfy the constraints of the generic problem theory.

2.1.1 Projects
The development of a fully formal generic modelling mechanism for the B event-based method is work
in progress. In the following, we indicate how the current framework can be used for implementing the
instantiation.
The key concept is that of a validated project: a collection of models, either machine or refinement or
implementation, which are completely verified through type checking and theorem proving. For simplicity,
and without loss of generality, we assume that there is only one machine in the current project, allowing us
to focus on the re-usability of developed models. Hence, a project G is roughly speaking an acyclic directed
graph of models related by the refinement relationship: G = ({G, ..., Gn},−→).

2.1.2 The General Model
In the following, in order to avoid confusion among names, we use different fonts for designating problems,
models and projects. The creation and the development of the project G follows the event B methodology.
We assume that G is an existing project corresponding to a given generic problem, denoted G. The model G
(see the template specification on the left of figure 1) is, in fact, the formal statement of the generic problem:
it incorporates relevant aspects of the generic problem — at a high level of abstraction — in an initial model.
This initial abstraction can be thought of as defining the scope of the problem and the behavioural properties
that require validation.
The model G provides a general framework for the current problem; the problem is characterized by a the-
ory defined by the clauses sets, constants and properties. The unique event helps in solving the problem
by defining the problem in an abstract form: saying what is required rather than how the solution is to be im-
plemented. Intuitively this corresponds to the problem being viewed as pre/post-condition relation between
an initial state and a final state which is arrived at after executing the single event. Of course, refinement
permits us to move from this “magical” one-step functional view of the required system’s behaviour to a
richer multi-step view.
The generic model G is the starting point of the development of the project G: it solves the problem
G; and the project is formally checked by the theorem prover. Constants in G can be instantiated, but
proof obligations must be established to ensure the validity of properties in the instantiated model, which
correspond to theorems in an instantiation.
Before we introduce the instantiation and refinement steps in our design pattern, we motivate the need for
such a pattern. In the general correct-by-construction refinement-based development process, working with
concrete models often leads to refinements generating large numbers of proof obligations that cannot be
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model
G

sets
s

constants
c

properties
P (s, c)

variables
x

invariant
J(x)

assertions
A(x)

initialisation
S(x)

events
event = L(x)

end

model
H

sets
t

constants
d

properties
Q(t, d)

variables
y

invariant
I(y)

assertions
C(y)

initialisation
spec init(y)

events
spec event = K(y)

end

Figure 2.1: Definition of models

discharged automatically. The main goal during development is to find a good refinement path: a short
sequence of refinement steps where a small number of proof obligations are generated at each step and
which are discharged automatically. Finding such a path usually requires reformulating or restructuring of
invariants, together with changes to the degree of detail (abstraction) in the models, and is very challenging
for non-experts. Thus, we would like to package such expertise in a re-usable construct, which we call a
formal design pattern.
In order to manage the complexity of the refinement path, one common approach (used by experts) is to find
a more generic representation of their initial problem where details are hidden by constants requiring in-
stantiation. Then, in general, the refinement path is much simpler to establish as it requires fewer interactive
proofs and leads to a correct concrete generic solution. To prove that this generic solution can be re-used,
through instantiation, to solve the initial concrete problem, two final steps are required. First, one must
show that the initial problem model is a correct instantiation of the generic problem model; and secondly,
one must show that the final solution model is a correct instantiation of the generic solution model.
In the best case, the generic refinement path has already been established and can be re-used directly. In
the worst case, this path has to be developed from scratch. However, even in this worst case, developing
the path at a higher level of abstraction (and proving 2 instantiations to be correct) is much easier1 than
developing the path at the lower level of abstraction.
Thus, our formal design pattern is a re-usable solution to a common design problem that can be exploited by
formal developers who are not necessarily expert. This re-use requires only that the developers understand
instantiation and refinement.

2.1.3 Instantiation

Consider a specific problem H in project H, say. We specify the specific requirements as a new model H
(see the template specification on the right of figure 1). In order to exploit our design pattern, we wish to
establish that an instantiation of the generic project G corresponds to the given problem H;
The instantiation of the generic project G for the generic problem G to solve the specific problemH consists
of exhibiting a set term σ(t, d), defined in terms of the set t and constant of d, and also a similar constant
term γ(t, d) for instantiating the constant c of G. Thus, the instantiation consists of repainting G with

1We have no formal metric for the complexity of a refinement path; however, intuitively a path is simpler if there are fewer proof
obligations that require interactive proof as they cannot be discharged automatically.
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σ(t, d) and γ(t, d) and to invoke it as G (σ(t, d), γ(t, d)). We must also rename each variable (resp. event)
of G by a unique variable (resp. event) of H2. This instantiation must resolve the specific problem H and
we propose to instantiate a development path through the refinement of H .

2.1.4 Proof Obligation of an Instantiation
Now, proof obligations of any subsequent refinement assume that the instantiated development solves the
specific problem H. The next refinement step captures the semantics of how the specific problem H is
solved in the same way as the problem G, after a suitable instantiation. When the instantiation is proved to
be correct, we freely obtain a complete instantiated development for the new problem H. An instantiation
requires one only to prove that the properties of the system G are theorems with respect to the properties of
H . We do this in two steps:

• (1) The properties of the system G, i.e. axioms defining the theory of G, are theorems in the new
theory defined by the problem H:

Q(t, d) ⇒ P (σ(t, d), γ(t, d))

• (2) both models are solving the same problem and the event spec event of H is refined by the instance
of the event event of G for the problem H:

Q(t, d) ∧ P (σ(t, d), γ(t, d)) ∧ I(y) ∧
[s, c := σ(t, d), γ(t, d)]J(y1) ∧ y = y1 ∧
R(L)(y1, y1′)
⇒
∃y′.(I(y′) ∧R(K)(y, y′))

Once we establish these two steps, we have a formal verification of the correctness of our concrete solution
with respect to the already existing generic project:

Property 1 When the given (previous) proof obligations are proved, the new problem H is solved by the
development of the problem G, up to renaming and instantiation.

2.1.5 A formal design pattern
When the refinement is proved, the new problem H is solved by the development of the problem G, upto
renaming and instantiation. A new project H is created from the project G of the problem G: events
are renamed, variables are renamed, instantiations are done. Parameters are not necessarily completely
instantiated or renamed: if a parameter is not instantiated then it keeps properties stated in the general
model and no new proof obligation is generated. We illustrate this formal design pattern in the following
diagram:

H
H

G I H.G
H F
G1 . H.G1

H F
.

H F
Gn I H.Gn

H
H.Gn+1

The diagram tells us where proof obligations must be proved: filled (triangular arrow) symbols show that
new proof obligations are generated and require proving; non-filled symbols show that proof obligations
have been generated but their proofs are inherited from the previous project (G). Horizontal arrows represent
instantiation. Vertical arrows represent refinement. The proof that model H.Gn+1 is a correct solution to
the problem H is simplified by re-use of the refinement path in project G.

2We can assume that H and G have no common parameters: x is different from y and events names are different.
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2.2 Application 1: Greedy algorithms

2.2.1 Introduction

Algorithms provide a class of systems on which one can apply proof-based development techniques like the
event B method, especially the refinement. The main advantage is the fact that we teach data structures and
algorithms to students, who should have simple explanations of why a given algorithm is effectively working
or why some assertion is an invariant for the algorithm under consideration . . . Hence, we have a good
knowledge of algorithmic problems and it is simpler for us to apply proof-based development techniques
on the algorithmic problems. Greedy algorithms constitute a well defined class of algorithms (applications
and properties) and we aim to provide proof-based patterns for facilitating the proof-based development (in
B) of greedy algorithms.
In a previous work [7], we have developed Prim’s algorithm and we have proved properties over trees: the
inductive definition of trees helps in deriving intermediate lemmas asserting that the growing tree converges
to the minimal spanning tree, according to the greedy strategy. The resulting algorithm was completely
proved using the proof assistant [32] and we can partially reuse current developed models to obtain Dijk-
stra’s algorithm or Kruskal’s algorithm. The greedy strategy is not always optimal and the optimality of
the resulting algorithm is proved by the theorem 24.1 of Cormen’s book [34] in the case of the minimal
spanning tree problem. The gain is clear, since we had a mechanised and verified proof of Prim’s algorithm.
The formalisation of greedy-oriented algorithmic structures was not so complicated but we were assuming
that a general theory on greedy structures could help in designing our greedy algorithms using the event B
method. Fortunately, S. Curtis [36] brings the theoretical material that was missing in our project; she has
formalised in a relational framework properties required for leading to the optimality of solutions, when
applying a greedy technique. However, we have not explained why we are choosing the greedy method and
what for? Our quest is to propose general proof-based developments (or patterns) for a given problem or for
a given paradigm. We think that the refinement provides a way to introduce generic elements in developed
models. A second objective is to illustrate the adequacy of the B prover [32], when checking results over
set-theoretical structures; in a sense, our work may seem to be a plagiarism of Curtis’s paper, but the tool
scans each detail to check and it validates each user hint, and, generally, there is no assisted significant proof
without human hint (proof step or tricky lemma). Hence, our text is an exercise in checking properties over
greedy structures and in proposing generic development of greedy algorithms; we do not know any other
mechanized complete proof-based developments of greedy algorithms.
Greedy algorithms are used to solve optimization problems like the shortest path problem or the best order
to execute a set of jobs. A greedy algorithm works in a local step to satisfy a global constraint. A greedy
algorithm can be summarized by the general algorithm 1, where C is the set of candidates and S is the
set containing the solution or possibly no solution. The goal is to optimize a set of candidates which is a
solution to the problem; the optimization maximizes or minimizes the value of an objective function. The
optimization state is checked by the Boolean function called goodchoice. Lectures notes of Charlier [30]
provide a very complete introduction to the underlying theories of the greedy algorithms like the matroids
theory for instance. S. A. Curtis [36] classifies greedy algorithms and uses a relation framework for ex-
pressing properties of the greedy algorithms; her characterization is based on the preservation of the safety
properties but the termination part is missing. Our development is based on her works, it reformulates
properties and proposes mechanically checked proofs in the B prover engine [6, 32]. First, we translate the
mathematical notations of the models of Curtis; we check the results proved in the paper using the theorem
prover of B. Then we show how to develop a greedy algorithm according to a given assumption. Finally,
we show how to instantiate a specific problem that can be solved using the greedy strategy.

2.2.2 Mathematical structures for the greedy method

First, in the step-by-step development, the definition of the mathematical objects requires to ensure the
existence of a solution and to identify the problem to solve. The greedy method is effective, when properties
are satisfied by the underlying mathematical structures. Like S. Curtis [36], we first define operators over
relations and then we prove properties related to the greedy method. In fact, it will be a checking phase of
Curtis’s results: we use a more conventional way to write set-theoretical objects in the B notation.
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Algorithm 1: General Greedy Algorithm [34]
Pre-condition:C is a set of possible candidates
Post-condition:Either a solution S, or no solution does exist

BEGIN
S:= emptyset;
WHILE C # emptyset and not solution(S)

DO
x:=select(C); C:=C-{x};
IF goodchoice(S \/ { x }) THEN S:=S \/ { x } FI;

OD;
IF solution(S) THEN return S ELSE return(no_solution} FI;

END

Mathematical definitions

We assume that a set E is given and is not empty; we use operators over binary relations over E. Those
operators are defined as constants and have properties: rep, opt, quotient, DOMAIN, NOTDOMAIN, lambda,
greedy.
The relation quotient captures the idea of implication; in fact, it satisfies the property: (quotient(S, T );T ) ⊆
S which explains the choice of the name quotient. The domains of (quotient(S, T ) and S have the same
carrier set. The range of (quotient(S, T ) and the domain of T have the same carrier set. The range of T
and the range of S have the same carrier set.
If S is a relation between X and Y and T is a relation between Z and Y , then quotient(S, T ) is a relation
between X and Z. The set operator does not exist in B but we can easily define it by quantification over
domain and range. Hopefully, S. Curtis uses only two kinds of quotient: either with X = Y = Z = E, or
X = Y = E and Z = P(E). Two functions quotient and quotientP are defined and the formal definition
in the B set theory is:

quotient ∈ (E ↔ E) × (E ↔ E) −→ (E ↔ E)
∀(R,S, T ).(R ∈ E ↔ E ∧ S ∈ E ↔ E ∧ T ∈ E ↔ E ∧R ⊆ quotient(S, T ) =⇒ (T ;R) ⊆ S)
∀(R,S, T ). (R ∈ E ↔ E ∧ S ∈ E ↔ E ∧ T ∈ E ↔ E(T ;R) ⊆ S =⇒ R ⊆ quotient(S, T ))

The next lemma is useful, when using the relation quotient and it has been proved by the proof tool.

Lemma 1 x 7→ y ∈ quotient(S, T ) ⇔ ∀z · (z 7→ x ∈ T =⇒ z 7→ y ∈ S)

The equivalence is split into two implications. In the first implication (⇒), the second property of quotient’s
definition is enough. For the second implication (⇐), we have instantiated R (the second property of
quotient’s definition) with the following set: {x 7→ y | x ∈ E∧y ∈ E∧∀z·(z 7→ x ∈ T =⇒ z 7→ y ∈ S)}

DOMAIN is the set of pairs (e, e) where e is in the
domain of the binary relation used as parameter and
NOTDOMAIN is the set of pairs (e, e) where e is not in
the domain of the binary relation used as parameter.
The B definitions are:

DOMAIN ∈ (E ↔ E) −→ (E ↔ E)
∀R.(R ∈ E ↔ E

=⇒ DOMAIN(R) = id(dom(R)))
NOTDOMAIN : (E ↔ E) ↔ (E ↔ E)
∀R.(R ∈ E ↔ E

=⇒ NOTDOMAIN(R) = id(E)− id(dom(R)))

opt assigns to each binary relation R over E a
binary relation modelling the criterion of optimal-
ity. S. Curtis defines opt as follow: opt(R) =∈
∩quotientP (R,3). The ∈ operator is not defined in
B and first, we define it as a relation In.

In ∈ P(E) ↔ E
∀(x, s).(x ∈ E ∧ s ∈ P(E)

⇒ (s 7→ x ∈ In ⇔ x ∈ s))
opt ∈ (E ↔ E) −→ (P(E) ↔ E)
∀R.(R ∈ E ↔ E

⇒ opt(R) = In ∩ quotientP (R, In−1))
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The next operator is called lambda and it returns the image of
each element in the domain of the relation; it is simply defined
as the image of a singleton {x} by the given relation:

lambda ∈ (E ↔ E) −→ (E −→ P(E))
∀(R, x). (R ∈ E ↔ E ∧ x ∈ dom(R)

⇒ lambda(R)(x) = R[{x}])

The greedy method is a method for computing optimal solutions in optimizations problems. The definition
of the criterion for the local optimality should be stated. We assume that L defines the criterion for the local

optimality and S defines

the next possible step opt for the criterion of optimal-
ity. greedy(L, S) is an operator defining pairs (x, y)
built as descendants for S and optimal with respect to
L.

greedy ∈ (E ↔ E)× (E ↔ E) −→ (E ↔ E)
∀(L, S).(L ∈ E ↔ E ∧ S ∈ E ↔ E

⇒ greedy(L, S) = (lambda(S); opt(L)))

The operator greedy satisfies a property derived with the proof tool.

Lemma 2 ∀(L, S).(L ∈ E ↔ E ∧ S ∈ E ↔ E ⇒ greedy(L, S) = S ∩ quotient(L, S−1))

The proof is discharged with the help of the prover; S. Curtis [36] writes that it is an useful property
but she does not give any proof sketch. According to the definitions of greedy(L, S) and opt(L), we
prove that (lambda(S); In ∩ quotientP (L, In−1)) = S ∩ quotient(L, S−1) which is rewritten into
((lambda(S); In) ∩ (lambda(S); quotientP (L, In−1))) = S ∩ quotient(L, S−1). The proof is split
into two cases:
1. ((lambda(S); In) = S which is easy to prove and
2. (lambda(S); quotientP (L, In−1)) = quotient(L, S−1) which is split in two inclusions
2.1. (lambda(S); quotientP (L, In−1)) ⊆ quotient(L, S−1) which is easy to prove with quotient and
quotientP definitions and
2.2. quotient(L, S−1) ⊆ lambda(S); quotientP (L, In−1))
For this last one we have used the first lemma: in one way (⇒) for quotient(L, S−1) and the other one (⇐)
for quotientP (L, In−1).

This point shows clearly that the derivation of proofs of significant theorems is possible, if there is a math-
ematical expertise of the mathematical topics. The next operator is approaching an algorithmic idea of a
process which is searching a value by repeating a step over a set as long as nothing is found. rep captures
the idea of repeating a relation on a set as long as it is possible to apply the relation and the result of the
application is simply a fixed-point. It behaves like a repeat-until loop and it may be operationally defined
as follows: a pair (x, y) is in rep(R), where R

is a binary relation over E, if either x /∈ dom(R)
and x = y, or x ∈ dom(R) and there is a path
over R leading to y /∈ dom(R). Formally, rep is
defined as follows:

rep ∈ (E ↔ E) −→ (E ↔ E)
∀R.(R ∈ E ↔ E

⇒ rep(R) = NOTDOMAIN(R) ∪ (R; rep(R)))
∀(S, R). ( R ∈ E ↔ E ∧ S ∈ E ↔ E∧

NOTDOMAIN(R) ∪ (R;S) ⊆ S
⇒ rep(R) ⊆ S)

repn (standing for n steps) computes the binary relation
obtained by composing a given binary relation with respect
to a given natural number.

repn ∈ (E ↔ E) × N 7→ (E ↔ E)
∀S.(S ∈ E ↔ E ⇒ repn(S, 0) = id(E))
∀(S, n).(n ∈ N? ∧ S ∈ E ↔ E

⇒ repn(S, n) = (repn(S, n− 1);S))

The proof of theorem 3 (due to S. Curtis) requires intermediate lemmas on rep and repn. The first lemma
is proved using the definition of rep and its minimality as a fixed-point (case ⊆) and by induction (case ⊇).
The second lemma is a consequence of the first lemma and the two last lemmas are proved by induction.

Lemma 3 1. ∀S.(S ∈ E ↔ E ⇒ rep(S) =UNION(n) · (n ∈ N|(repn(S, n); NOTDOMAIN(S))))

2. ∀(S, x, y).(S ∈ E ↔ E ∧ x ∈ E ∧ y ∈ E ∧ x 7→ y ∈ rep(S)
⇒ ∃n.(n ∈ N ∧ x 7→ y ∈ repn(S, n) ∧ y 7→ y ∈ NOTDOMAIN(S)))

3. ∀(S, n).(S ∈ E ↔ E ∧ n ∈ N ⇒ (S; repn(S, n) = (repn(S, n);S))
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4. ∀(S, n,m).(S ∈ E ↔ E ∧ n ∈ N ∧ m ∈ N ∧ m ≤ n
quad ⇒ repn(S, n) = (repn(S, m); repn(S, n−m))

The definitions provide a general framework for expressing optimization problems related to the greedy
method; Curtis [36] defines four classes of greedy problems by characterizing conditions over theories.
She specializes the general theory and we translate her characterizations in the B set theory. Using these
characterizations, properties ensuring the optimality of the solution are proved.

Properties derived from the mathematical structures

Following Curtis [36], we prove four possible cases on mathematical structures which are ensuring the
optimality of the solution for the greedy method. The four cases are related by implicative properties; the
stronger case is called the better-local case and the weaker (or the most general ) is the best-global)(Semantical
diagram of Curtis’s classification [36]). It is a simple rewriting of Curtis’s theorem but they are mechani-
cally checked by our proof engine and they confirm the results of Curtis.
The terminology for greedy algorithms mentions a construction step, a local optimality criterion and a global
optimality criterion. Following the terminology, we consider four cases corresponding to assumptions made
on the mathematical structures and the current problem. Following Curtis [36], every greedy algorithm that
finds optimal solutions to optimisation problems complies with this principle. We do not discuss this aspect
and use it like a postulate. Let assume that L and C are two preorders over a set E and S is a binary relation
over E. greedy defines the greedy flavour of the method by combining both criteria over L for local and C
for global. Curtis’s theorems have the following schema:(

preorder(L) ∧ preorder(C)∧
S ∈ E ↔ E ∧H(L,C, S)

)
⇒ rep(greedy(L, S)) ⊆ (lambda(rep(S)); opt(C)))

On the theorem 1 (Best-Global), H(L,C, S) equals to(
DOMAIN(greedy(L, S)) = DOMAIN(S) ∧
((rep(S))−1; greedy(L, S)) ⊆ (C; rep(S)−1)

)
Our proof is quiet similar to Curtis’s one.

On the theorem 2 (Better-Global), H(L,C, S) equals to
DOMAIN(greedy(L, S)) = DOMAIN(S) ∧
(S−1;L; DOMAIN(S)) ⊆ (L;S−1) ∧
(S−1;L; NOTDOMAIN(S)) ⊆ L ∧
(NOTDOMAIN(S);L) ⊆ (C; rep(S)−1)

 Our proof is similar to Curtis’s one; we prove that as-
sumptions of the theorem 2 imply assumptions of the-
orem 1.

On the theorem 3 (Best-Local), H(L,C, S) equals to
DOMAIN(greedy(C,S)) = DOMAIN(S) ∧
∀n.(n ∈ N ⇒

repn(greedy(L, S), n) ⊆ (lambda(repn(S, n)); opt(L))) ∧
(S−1;L; NOTDOMAIN(S)) ⊆ L ∧
(NOTDOMAIN(S);L) ⊆ (C; (rep(S))−1)


Our proof is quiet similar to
Curtis’s one. We prove that as-
sumptions of theorem 3 imply
assumptions of theorem 1.

During the mechanical proof, we discover missing obvious cases and one obvious hypothesis.
On the theorem 4 (Best-Local),H(L,C, S) equals to

DOMAIN(greedy(L, S)) = DOMAIN(S) ∧
(S−1;L; DOMAIN(S)) ⊆ (L;S−1) ∧
(S−1;L; NOTDOMAIN(S)) ⊆ L ∧
(NOTDOMAIN(S);L) ⊆ (C; rep(S)−1)

 Following Curtis’s classification, we have proved the
theorem in two manners: we prove that assumptions
of theorem 4 imply assumptions of theorem 2 and that

assumption of theorem 4 imply hypothesis of theorem 3. Our proofs are similar to Curtis’s ones.
The number of interactions (clicks for choosing a function of the proof tool, choice of rules, . . . ) during the
proof process for lemmas and theorems is presented 742 interactions with the prover.

Greedy theories

The four theories are related according to the diagram expressing the power of a theory with respect to
another one and it tells us that the best global theory is the most general one. However, the three other ones
provide a way to classify the greedy algorithms and they can be simpler to derive a proved step-by-step
developed greedy algorithm. Each theory must ensure the existence of an optimal solution in the set of
possible solutions and it is the key property of the proof of optimality of this algorithm. We will develop
the greedy algorithm from the most general theory namely the best global theory. Our intuition is that the
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theorem 1 is a refinement proof and that the other theorems are instantiation proof and the corresponding
development can be obtain from our first development.

2.2.3 Abstract algorithmic models for the greedy method
The mathematical framework is clearly defined and we have four classes for greedy problems; we develop
a sequence of refined general models for the greedy method. The development process has the following
steps:

• First abstract greedy model BG0

• Greedy refinement model BG1 for the Best-Global principle

• Refinement model for getting an algorithmic expression

We assume that E and rep, opt, quotient, quotientP , DOMAIN, NOTDOMAIN, lambda and rep are given;
they satisfy the properties of the previous defined theory (repn can be defined later). Now, we should define
several new constants:

1. S is the step of the algorithm

2. C is the criterion for the global optimality and is a pre-order over E.

3. greedy is the step of the greedy algorithm

4. initial value is the initial value

5. preorder(O) ∆= O ∈ E ↔ E ∧ id(E) ⊆ O ∧ (O;O) ⊆ O

model
BG0

sets
E

constants
C,S, lambda, rep, opt, initial value

properties
. . .
S ∈ E ↔ E
preorder(C)
initial value ∈ E

variables
solution

invariant
solution ∈ E

initialisation
solution :∈ E

events
compute =̂ any e where

e ∈ E
initial value 7→ e ∈ (lambda(rep(S)); opt(C))

then
solution := e

end
end

The first abstract model is not very surprising; it computes in one shot an optimal solution. We use a variable
called solution. Two events are defined in the first abstract model. Initialisation is the initial event; it starts
the execution of the abstract system by assigning any value to solution. compute computes an optimal
solution among the possible ones; the set of possible optimal solutions is not empty. The invariant of the
system is simple: solution ∈ E; the assumptions on the constants allow us to derive the validity of the
current model. There are no difficulties. This model states the initial problem and the next refinement will
give some solution.
Now, we should choose one criterion and we choose to assume that the mathematical structure satisfies
the Best-Global principle. We add the properties related to the principle and we introduce the function for
modelling the repetition rep.

DOMAIN(greedy(L, S)) = DOMAIN(S) ∧ ((rep(S))−1; greedy(L, S)) ⊆ (C; rep(S)−1)

The next property is derived from the assumptions over the current model.
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Property 2 Under the conditions defined by the greedy theory and the best global ones, the set (lambda(rep(S)); opt(C))
is not empty.

The current model BG0 is refined by modifying the event compute, since the theorem 1 states that rep(greedy(L, S)) ⊆
(lambda(rep(S)); opt(C)). compute computes an optimal solution among the possible ones; the set of
possible optimal solutions is not empty.

refinement
BG1

refines
BG0

constants
L

properties
preorder(L)
DOMAIN(greedy(L, S)) = DOMAIN(S)
((rep(S))−1; greedy(L, S)) ⊆ (C; rep(S)−1)

variables
solution

invariant
solution ∈ E

initialisation
solution :∈ E

events
compute =̂ any e where

e ∈ E
initial value 7→ e ∈ rep(greedy(L, S))

then
solution := e

end
end

The new refinement BG2 introduces the effective computation step and the new invariant is much more
elaborate. It includes the notion of existence of a solution while iterating. A new variable is introduced
to contain the current value and it is called current. The new invariant states that the current value is an
execution value leading to an optimal solution in finite time:
solution ∈ E ∧ current ∈ E ∧
∃n.(n ∈ N ∧ initial value 7→ current ∈ repn(greedy(L, S), n))

The initial event and the event compute are
refined and a new event is introduced to
model the step of the iteration. The final
event is triggered, when the guard is true.

compute =̂
when

current 7→ current ∈ NOTDOMAIN(greedy(L, S))
then

solution := current
end

The event step models the step of each computation while loop-
ing. We can replace BG1 properties (assumptions of theorem 1)
by assumptions of theorem 2 (resp theorem 3 or theorem 4) to
obtain a refinement proof, which is similar to the proof of the-
orem 2 (resp. theorem 3 or theorem 4). However, these devel-
opments seem to be independent, because the classification (of
Curtis) is hidden inside the proof.

step =̂
any e where

e ∈ E
current 7→ e ∈ greedy(L, S)

then
current := e

end
end

In this section, we explain how we can obtain other algorithms Best-Local, Better-Global and Better-Local
by an instantiation of our previous model Best-Global. We give only an example. We omit to write the
refinement model BG3 and we obtain a generic algorithm 2 from the refinement model BG3 by combining
events. To obtain a complete development (similar to the previous one), we can instantiate name by name
the previous development. Instantiation proof of refinement are obvious: both abstract models compute the
same result. The other instantiation of proof obligation is that the properties of the Better-Global imply
properties of the Best-Global system. This proof obligation is exactly the second theorem. We summarize
the final statement of proofs discharged through the different refinement step.

2.2.4 Conclusion
The incremental proof-based development of greedy algorithms is illustrated from the theoretical character-
ization of S. Curtis [36] and we state and check properties over mathematical structures related to the greedy
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Algorithm 2: General Greedy Algorithm
Pre-condition:C is a set of possible candidates
Post-condition:Either a solution S, or no solution does exist

BEGIN
solution::E;
current:=initial_value;
WHILE current in domain(S)

DO
current:= ChooseOneIn(opt(L)(S[{ current}]))

OD
solution:=current

END

method. The main advantage is to obtain a complete checking of Curtis’s results, since a proof tool is not
accepting results as left to the reader and every proof step should be completely discharged. The exercise
illustrates the use of generic developments based on very general mathematical structures; the genericity of
proof-based development is a way to improve the proof process. This point should be developed by replay-
ing the development of Prim’s algorithm already developed using the refinement [7]; we plan to develop
Kruskal’s algorithm and other greedy problems. The fundamental question is also to be able to state what
is the problem to solve and any development should start by the statement of mathematical structures and
by the proof of properties required for the given problem (existence of solutions, for instance). Future work
will develop new instantiations for the greedy-oriented developments.

2.3 Application 2: Electronic voting

The storage of votes is a critical component of any voting system. In traditional systems there is a high
level of transparency in the mechanisms used to store votes, and thus a reasonable degree of trustworthiness
in the security of the votes in storage. This degree of transparency is much more difficult to attain in
electronic voting systems, and so the specific mechanisms put in place to ensure the security of stored votes
require much stronger verification in order for them to be trusted by the public. There are many desirable
properties that one could reasonably expect a vote store to exhibit. From the point of view of security,
we argue that tamper-evident storage is one of the most important requirements: the changing, or deletion
of already validated and stored votes should be detectable; as should the addition of unauthorised votes
after the election is concluded. We propose the application of formal methods for guaranteeing, through
construction, the correctness of a vote store with respect to the requirement for tamper-evident storage. We
illustrate the utility of our refinement-based approach by verifying — through the application of a reusable
formal design pattern — a store design that uses a specific PROM technology and applies a specific encoding
mechanism.

2.3.1 Introduction

Motivation: the e-voting problem

Computer technology has the potential to modernise the voting process and to improve upon existing sys-
tems; but it also introduces new concerns with respect to secrecy, accuracy, trust and security[46]. The
debate over e-voting is not a new one — recent use of such systems in actual elections has led to their
analysis from a number of different viewpoints: usability[47], trustworthiness and safety criticality[57],
transparency and openness[58], and risks and threats[65].
The potential advantages are generally accepted, for example: faster result tabulation, elimination of human
error which occurs in manual vote tabulation, assistance to voters with “special” needs, defence against
fraudulent practices (e.g. with postal votes[18]), and improving the “fairness” of count systems that incor-
porate “unfair” non-deterministic procedures[75].
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Despite ever-increasing uncertainty over the trustworthiness of these systems — which is one of the major
disadvantage associated with them — many countries (particularly in Europe[74]) have recently chosen to
adopt e-voting. The main risks that have been clearly identified seem not to concern those responsible for
procuring the systems. In fact, it appears that e-voting is just one, well-publicised, example of governments
wishing to adopt new technologies[71] before the risks and benefits, as perceived by the public[49], have
been properly analysed and debated.
This study contributes to answering two important questions: firstly, whether the public’s mistrust in the
security of e-voting systems is well-founded; and secondly, whether formal methods have a role to play in
addressing the problem of mistrust. With respect to the first aspect, Kocher and Schneier[51] state: “The
threats are real, making openness and verifiability critical to election security.” As to the second aspect,
expecting the public to trust the adoption of such new technology is only possible if they can be convinced
that it rests on firm trustworthy foundations. The formal methods community have an important role to play
in this respect: the use of formal notations provides a fundamental foundation upon which the complexities
of ever-changing technologies can be managed[45]. We argue that without the adoption and promotion of
formal methods as the foundations of software engineering, developing trustworthy e-voting systems will
not necessarily guarantee that they will be trusted.
This study proposes that, in general, already existing formal techniques can help to alleviate many of the
verification problems that the adoption of new e-voting technologies can introduce. For the specific mod-
elling and verification in our study we use the event-B method[4], based on the B notation. We argue that it
is unreasonable to expect the public to trust a system (or part of a system) to behave correctly just because
it is developed using a formal method (like event-B)3. Instead, we propose that we must first establish a set
of quality standards for reliable, re-usable, trustworthy tools and techniques that have proven themselves
in the formal development of correct systems. Then, provided the public are properly informed, it is not
unreasonable to expect systems built in this way to be both more trustworthy and more trusted. The correct-
by-construction approach in this paper illustrates the type of standard process to which we are alluding.

Formal methods and vote storage

Public opinion, arising from detailed debate of the issues, would suggest that for e-voting machines to
be acceptable they should be developed following best practice with regards to the engineering of critical
systems. Media reports would also suggest that the secure storage of votes is one of the issues that is most
mistrusted by the public.
We propose the use of formal methods as a means of ensuring that a machine securely stores votes, and
we propose to demonstrate the utility of formal methods through guaranteeing simple safety properties of
a voting machine store. The main property that we examine is concerned with the need for tamper-evident
storage, which addresses the risk of unauthorised tampering of vote data after it has been correctly registered
and stored. In Analysis of an electronic voting system[52], we see that such a security weakness already
exists in one of the most widely procured voting systems:

“. . . an adversary could alter election results by modifying ballot definition files, and . . . it leaves
no evidence that an attack was ever mounted”

Here, the “adversary” is most likely to be a single insider (election official) with access to the storage device.
We argue that it is the responsibility of the storage designers to guarantee the security of the votes stored
without having to make an assumption about the behaviour or intent of such officials.
In order to illustrate how a guarantee could be made, we use event-B and apply an incremental refinement
approach to verifying a sequence of designs for the storage of votes, which we prove to be correct-through-
construction with respect to the simple requirement that the vote storage is tamper-evident.

Refinement and genericity: a formal design pattern

¿From a technological viewpoint we know that system design has an important role in security assurance.
Mercuri[60] addresses the theme of quality in the process of engineering security:

“By encouraging artistry and applying craftsmanship to our security problems, viable solutions
will emerge.”

3This is analagous to the current common situation where the public have been asked to trust the e-voting machines because they
have been independently tested by some appropriately accredited body. Experience now shows that such trust was misplaced.
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This supports our view that one must start with a simple model of the vote store requirements and refine
that model, during design, towards a correct implementation. For this reason we chose a simple security
requirement — that only valid votes can be found in the vote store and that these cannot be tampered with
without detection — and start our formal development from there. The use of formal methods to guarantee
that only valid votes are passed from the machine interface to the store has already been presented[23]. The
work presented in this study, which addresses the tamper-evident requirement, is complementary in nature:
event-B is the common modelling language, and correctness through construction is the common formal
design approach.
As one of the long-term goals of the formal methods community is to simplify the verification process
for engineers[19, 50], we support the view that re-usable verification design patterns, similar in nature
to the work by Mehlitz and Penix[59], as a potential solution to this problem. This study identifies a
good candidate for such a re-usable pattern, combining genericity and refinement to provide a correct-by-
construction pattern (see Section 4).

2.3.2 Manchester Encoding: formalising the design of a secure vote PROM
The main design that is modelled and verified in this study is taken directly from the work by Molnar,
Kohno, Sastry and Wagner[61]. Their proposed solution to providing tamper-evident storage involves the
application of Manchester codes[72] and a write-once data PROM store. The encoding simply represents a
0 as a 01 and a 1 as a 10. Thus, when validating votes stored as pairs of bits there are 2 additional pair cases
to be considered, where (because our memory allows only 1s to be overwritten as 0s): 11 corresponds to
unwritten memory and 00 corresponds to an invalid memory that has been tampered with.
Before we formally specify and verify the proposed solution, we briefly note that there is a real pragmatic
need for tamper-evident rather than tamper-proof writeable storage. The tamper-proof requirement can be
met only by some security mechanism ensuring authorised-only update of the vote store. This security
mechanism would probably be implemented as some combination of physical constraints, together with
hardware and software checks. It would most likely involve some complex encryption technique and it
is not clear whether one could, or should, expect voters to trust such a complex system. Contrastingly,
guaranteeing the tamper-evident requirement is a much simpler problem that — if done well — could be
both trustworthy and trusted.
Implementing storage using a write-once data store has many obvious advantages when we consider tam-
pering: obviously, any vote that has already been written cannot be overwritten? In fact, without a more
formal model of the store, this is not guaranteed to be true. For example, one form of write-once storage
could allow the flipping of an initial bit state to be done once and once only. This does not necessarily
guarantee that a recorded vote cannot be overwritten as individual bits of a vote will not have been flipped
when a vote is recorded. In fact, as with all storage mechanisms, the (encoding) protocol used for writing
information to such a store will be the deciding factor in whether the tampering requirements are met. Fur-
thermore, there are many reasonable variations of the tampering requirement. Without a precise statement,
it is not clear whether we will be able to verify whether a given system (the store properties, together with
the encoding protocol) is correct.
The key property of the encoding that we shall model is that if any (sub)set of 1 bits in a stored codeword are
flipped to 0s then the result is no longer a valid code word. We then wish to establish that anyone with read
access to the voting store can detect an invalid memory state, where at least one codeword is invalid, and
consequently any tampering after4 the election has been completed. The verification of this safety property
requires modelling of the write-once behaviour in the chosen PROM implementation (checking that 1s can
be re-written as 0s but that 0s cannot be changed) in conjunction with the encoding mechanism. It also
requires the use of a special election over bit (bit pair in PROM) to signify that the election is over, and
which must be unset and untampered with for new votes to be recorded (otherwise anyone with access to
the voting machine could add unauthorised votes after the election, an attack known as ballot stuffing). We
chose not to include the election-over behaviour in the model presented in this study.
We note that this system is not tamper proof: attackers with write access to the vote store can still invalidate
the election by overwriting vote data. However, this attacks would be easily identified by procedures for
validating the storage state during and after the vote.
The main advantages of doing this design formally, in event-B, are development oriented:

4It is trivial to extend our model to dynamically detect tampering during an election but for simplicity and conciseness we do not
present details of this variation of tamper-evidence in this study.
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• an abstract model can be easily validated as correctly expressing the requirement,

• the actual design model can be constructed incrementally through refinement of the abstraction,

• the refinement process can continue through to modelling at very fine grain levels of detail that cor-
respond to the chosen low-level implementation architecture,

• we can more easily reason about different variations and combinations of encodings and storage
media, and

• we can analyse possible problems of integrating this requirement with other requirements of the e-
voting system, in general, and the vote storage, in particular.

Thus, we are more likely to develop a trustworthy storage.
A secondary benefit arises when we consider the issue of how to build public trust in our formally developed
trustworthy system. We argue that the correct-by-construction technique, embodied in a reusable design
pattern, will become more and more trusted as it is used to develop more and more systems that prove
themselves to be trustworthy. As a consequence, using such a standard technique (and associated tools) in
constructing critical systems will increase confidence in the systems’ correctness, from both the developers
and the public users.
With tool support for automatically checking our verification proof we have another advantage: if our proof
tool is trustworthy then the design is sure to be correct provided the property that we have established, in
the initial abstract model, is an accurate statement of the high level requirement. To make this transparent
to the users (voters) it is essential that an initial abstract model is easy to understand and validate, and that
they have good reason not to mistrust our proof tool and techniques. Our design approach facilitates this
type of openness and transparency.

The generic problem model m1

The refinement in model m1 introduces an abstract mechanism for encoding votes. Constants G C (for
GoodCode) and B C (for BadCode) are two subsets of the set CODE. These sets are disjoint but don’t
neccessary cover the set CODE. The constant code is a bijection between V OTES and G C.
The last constant chg
is a relation between
CODEs. The most
important property of
the relation chg is
that a good or bad
code can only be
changed to a bad one.
In B we specify these
as PROPERTIES
of the model.

G C ⊆ CODE
B C ⊆ CODE
G C ∩B C = ∅
code ∈ V OTE �� G C
chg ∈ CODE ↔ CODE
chg[G C ∪B C] ⊆ B C

We refine the corrupt event to ensure that any encoded vote that has been changed can be recognised as
being bad. Furthermore, we refine the skip event to say that if we now allow encoded votes to be changed
then a bad vote is guaranteed to stay bad.

corrupt =̂
any v, c, b where

v ∈ vt
c ∈ G C
b ∈ CODE
v 7→ c ∈ Cv
c 7→ b ∈ chg

then
Cv(v) := b

end

corrupt again =̂
any v, c, b where

v ∈ vt
c ∈ B C
b ∈ CODE
v 7→ c ∈ Cv
c 7→ b ∈ chg

then
Cv(v) := b

end
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m1 refines m0

There is some additional work in proving that m1 refines
m0 as we need to
“glue together” the
abstract and concrete
models using a glu-
ing invariant.

Cv ∈ vt → G C ∪B C
good = dom(Cv � G C)
bad = dom(Cv � B C)

To glue together the actual set of votes (vt) with the CODE we introduce Cv. Then, the abstract variables
good and bad can be defined in the concrete model using Cv.
We note that m1 generated 11 proof obligations and all but one were automatically discharged, with the
single remaining obligation easily discharged through interaction with the theorem prover.

2.3.3 Project H
In project G we have abstracted away from how a vote is represented. In project H we work with concrete
representations of the votes (within the generic structure of project G) by instantiating parameters of the
models in G.

The problem to be solved — MCH

In our pattern, the new problem to be solved is expressed by the model called MCH; which contains all
specific constants, and with identical variables and identical event names as can be found in m0. M0 (resp.
M1) is the model m0 (resp. m1) instantiated using the new constants of MCH and our new project is
MCH. MCH is the basis for our iterative refinement development process. The main point of interest is
that the refinement between the model MCH and the model M0, an instance of m0, allows us to guarantee
that our specific problem MCH is solved or refined by our intantiated model M0. For convenience (and
space) we present all specific constants in two steps when presenting M0 and M1.

M0 refines MCH and instantiates m0

We start the development with an abstract model where a vote is represented by k bits. In fact, the abstract
V OTE set in model m0 is replaced (instantiated) by our more concrete V OTES:

k ∈ N
V OTES = 1..k → 0..1

We have nothing to prove to verify that this instantiation is correct (there are no additional properties on
abstract set V OTE). The proof obligation that M0 refines MCH is obvious (with the same abstract and
concrete events) and done automatically.

M1 — an intermediate design step

For this step we enrich the representation of a vote by doubling the number of bits. Each bit in the original
vote representation is paired with its inverse value. For example, a vote that was represented as 10010 will
now be represented by (10010, 01101)

inv ∈ V OTES → V OTES

∀(v, i) ·

 v ∈ V OTES ∧ i ∈ 1..k
=⇒
inv(v)(i) = 1− v(i)


CODE = V OTES × V OTES
code ∈ V OTES → CODE
∀v · (v ∈ V OTES =⇒ code(v) = v 7→ inv(v))

For the new model, we instantiate the constants of the generic model m0: GC instantiates G C and BC
instantiates B C and chgv ∪ chgi instantiates chg.
GC and BC are specified as follows:
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GC = {v 7→ w|v 7→ w ∈ CODE ∧ w = inv(v)}
BC = {c|c ∈ CODE ∧ PC(c)} −GC

Note: in the definition of BC we use a predicate over codes, PC, that is defined to identify all “possible” codes. This
predicate is true except in the case where a pair of bits in an encoded vote are both 1. This encoding is not possible
because we allow only bits to change from 1 to 0 (and not from 0 to 1) and because all votes are initially coded as good
codes (with pairs 01 or 10). PC is defined as follows:

PC(c) = ∃(v, w) ·

0BBBB@
c = v 7→ w ∧

∀i ·

0BB@
i ∈ 1..k ∧
v(i) = 1

=⇒
w(i) = 0

1CCA
1CCCCA

Now we wish to specify that when a change is made to a single bit of a vote’s representation (in either of the pair
elements) then only a bit 1 can change to the bit 0. We do this by defining chgv to specify how the vote part of the pair
can change, and chgi to specify how (symmetrically) the inverse part of the pair can change. The specification of chgi
is given below:0BBBBBBBBBB@

(v1 7→ w1) 7→ (v2 7→ w2) ∈ chgi
⇔

v1 = v2 ∧

∃i ·

0BBBB@
i ∈ 1..k ∧
w1(i) = 1 ∧ w2(i) = 0 ∧

∀j ·

0@ j ∈ 1..k ∧ i 6= j
=⇒
w1(j) = w2(j)

1A
1CCCCA

1CCCCCCCCCCA
The specification of chgv is symmetrically defined.

2.3.4 M1 instantiates m1

We have instantiated5 our previous generic model replacing: G C with GC, BC with BC and chg with chgv ∪ chgi.
Then we need to prove the instantiation to be correct by establishing the following proof obligation (from the invariant
of model m1).

GC ⊆ CODE
BC ⊆ CODE
GC ∩BC = ∅
code ∈ V OTE �� GC
chgv ∪ chgi ∈ CODE ↔ CODE
(chgv ∪ chgi)[GC ∪BC] ⊆ BC

For convenience we structure the proof based on the two symmetric cases, depending on whether a change is made using
chgi or chgv. To do this, we split both events corrupt and corrupt again into corruptv and corruptv again,
and corrupti and corrupti again.
For brevity, we give the definition of only one half of the symmetric pair, the chgv case:

corruptv b=
any v, c, b where

v ∈ vt
c ∈ G C
b ∈ CODE
v 7→ c ∈ Cv
c 7→ b ∈ chgv

then
Cv(v) := b

end

corruptv again b=
any v, c, b where

v ∈ vt
c ∈ B C
b ∈ CODE
v 7→ c ∈ Cv
c 7→ b ∈ chgv

then
Cv(v) := b

end

We note that for this step we had 7 proof obligations (for the instantiation), 3 of which required interactive proofs.

5In our design pattern, M1 is shown as simply an instantiation of m1. In fact, in this study, M1 is constructed as a refinement of
the instantiation. For the sake of brevity, we have combined a horizontal instantiation with a vertical refinement in a single development
step.
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2.3.5 A final implementation model — M2

A manchester code is a sequences of 2×k bits where the oddly ranked bits give the representation of the original k bits
of an unencoded vote, and the even rank gives the bit-wise inverse. This is defined by MNCH , below:

MNCH = 1..2× k → 0..1
mcode ∈ V OTES → MNCH

∀(v, i) ·

0BB@
v ∈ V OTES ∧ i ∈ 1..k

=⇒
mcode(v)(2× i− 1) = v(i) ∧
mcode(v)(2× i) = 1− v(i)

1CCA
We also define two constants, mv and mi, to extract a vote and its inverse from the manchester encoded (2× k) bits:

mv ∈ MNCH → V OTES
mi ∈ MNCH → V OTES

∀(c, i) ·

0BB@
c ∈ MNCH ∧ i ∈ 1..k

=⇒
mv(c)(i) = c(2× i)− 1 ∧
mi(c)(i) = c(2× i))

1CCA
M2 refines M1

It should be obvious that the Manchester code is a correct implementation of our requirements since it is clearly a
correct implementation of M1. Intuitively, M2 refines M1 by changing the way in which the votes are encoded. In
M1 they are encoded as a pair of bitsequences; in M2 they are single bit sequences where the original pair values have
been interleaved. For example, the vote 101 is encoded as (101, 010) in M1 but as 100110 in M2.
In order to formally proof this, we establish that the invariant in M1 is true in the refinement M2. In order to do this,
we replace (instantiate) Cv with Mchv.

Mchv ∈ vt → MCH

∀(v, m) ·

0BBBB@
v ∈ vt ∧
m ∈ MNCH ∧
v 7→ m ∈ Mchv

=⇒
v 7→ (mv(m) 7→ mi(m) ∈ Cv

1CCCCA
Then we introduce two more constants:

corruptx b=
any v, c, a where

v ∈ vt
v 7→ c ∈ Mchv
GD
a ∈ 1..2× k
x(a)
c(a) = 1

then
Mchv(v)(a) := 0

end

corruptx again b=
any v, c, a where

v ∈ vt
v 7→ c ∈ Mchv
¬GD
a ∈ 1..2× k
x(a)
c(a) = 1

then
Mchv(v)(a) := 0

end

where:

GD = ∀i ·

0@ i ∈ 1..k
=⇒
c(2× i− 1) 6= c(2× i)

1A, and

v(a) = odd(a) and i(a) = even(a).

Without going into details, we note that in this step there are 15 proof obligations, 5 of which required interactive proofs
as they could not be discharged automatically by the tool.

2.3.6 Conclusions
We have argued that without the adoption and promotion of formal methods, as the foundations of software engineering,
developing trustworthy e-voting systems will not necessarily guarantee that they will be trusted. We have demonstrated
the application of the formal methods event-B for guaranteeing, through construction, the correctness of a vote store
with respect to the requirement for tamper-evident storage. We illustrated the utility of our refinement-based approach
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by verifying — through the application of a reusable formal design pattern — a store design that uses a specific PROM
technology and applies a specific Manchester encoding mechanism. The formal design pattern is a reusable solution
to a common design problem — of how genericity can help to structure the refinement proof process — that can be
exploited by formal developers who are not necessarily expert.
Future work is mainly concerned with maintainability and extensibility, for example:

• Strongly tamper-evident storage — The design that we have presented in this study guarantees that the store
is weakly tamper evident. It is said to be weak because tampering can be detected once an election is complete.
In fact, with minor modifications to the design we can meet the requirement for a store that is strongly tamper
evident: so that tampering can be detected during the voting process.

• Election closed bit — There is a separate requirement that no more votes can be recorded once an election is
closed. Clearly, the implementation of this requirement will involve some extension to the storage of votes so
that the store is protected against any further addition of votes after the voting process is terminated (known as
vote stuffing). A proposed design is to add an election closed bit to the store and to check that this is not set as a
guard for the writing of a vote to the store. Of course, with our encoding mechanism we can detect when this bit
has been tampered with. However, without formal modelling it is difficult to reason about the consequences of
such a design with respect to a potential denial of service attack where the bit is set before the election has really
terminated.

• History independent storage – The requirement that the physical order of the votes recorded in the store cannot
be used to deduce any information about the vote of a particular voter.

We will analyse the different structuring mechanisms in event-B and the ways in which they can be used to extend our
storage requirements.
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Chapter 3

The call as event pattern
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Event B is supported by the RODIN platform and provides a framework for teaching programming methodology based
on the famous pre/post specifications, together with the refinement. We illustrate a pattern and a methodology based
on Event B and the refinement by developing Floyd’s algorithm for computing the shortest distances of a graph, which
is based on an algorithm design technique called dynamic programming. The development is based on a paradigm
identifying a non-deterministic event with a procedure call and by introducing control states. The pattern provides a
tool for developing many case studies of the classical algorithmics; moreover, a tool is under construction for applying
the pattern.

3.1 Introduction
Overview. Event B is supported by the RODIN platform and provides a framework for teaching programming method-
ology based on the famous pre/post specifications, together with the refinement. We illustrate a methodology based on
Event B and the refinement by developing algorithms for computing the shortest distances of a graph, which is based on
an algorithm design technique called dynamic programming. Floyd’s algorithm is redeveloped and we add comments
on the complexity of proofs and on the discovery of invariant; it should be considered as an illustration of a technique
introduced in a joint paper with D. Cansell[28]. The development is based on a paradigm identifying a non-deterministic
event with a procedure call and by introducing control states. We discuss points related to our lectures at different levels
of the university. It is also a way to introduce a pattern used for developing sequential structured programs.
Progamming methodology. The development of structured programs is carried out either using bottom-up techniques,
or top-down techniques; we show how refinement and proof can be used to help in the top-down development of
structured imperative programs. When a problem is stated, the incremental proof-based methodology of event B[25]
starts by stating a very abstract model and further refinements lead to finer-grain event-based models which are used to
derive an algorithm[5]. The main idea is to consider each procedure call as an abstract event of a model corresponding to
the development of the procedure; generally, a procedure is specified by a pre/post specification and then the refinement
process leads to a set of events, which are finally combined to obtain the body of the procedure. The refinement process
can be considered as an unfolding of calls statements under preservation of invariants. It means that the abstraction
corresponds to the procedure call and the body is derived using the refinement process. The refinement process may
also use recursive procedures and supports the top-down refinement. The procedure call simulates the abstract event
and the refinement guarantees the correctness of the resulting algorithm. A preliminary version[28] introduces ideas on
a case study and provides an extended abstract of the current paper.
Proof-based Development. Proof-based development methods[11, 3, 62] integrate formal proof techniques in the
development of software systems. The main idea is to start with a very abstract model of the system under development.
Details are gradually added to this first model by building a sequence of more concrete events. The relationship between
two successive models in this sequence is that of refinement[11, 3]. The essence of the refinement relationship is that it
preserves already proved system properties including safety properties and termination. A development gives rise to a
number of, so-called, proof obligations, which guarantee its correctness. Such proof obligations are discharged by the
proof tool using automatic and interactive proof procedures supported by a proof engine[6]. At the most abstract level
it is obligatory to describe the static properties of a model’s data by means of an “invariant” predicate. This gives rise
to proof obligations relating to the consistency of the model. They are required to ensure that data properties which
are claimed to be invariant are preserved by the events of the model. Each refinement step is associated with a further
invariant which relates the data of the more concrete model to that of the abstract model and states any additional
invariant properties of the (possibly richer) concrete data model. These invariants, so-called gluing invariants are used
in the formulation of the refinement proof obligations. The goal of a event B development is to obtain a proved model
and to implement the correctness-by-construction[55] paradigm. Since the development process leads to a large number
of proof obligations, the mastering of proof complexity is a crucial issue. Even if a proof tool is available, its effective
power is limited by classical results over logical theories and we must distribute the complexity of proofs over the
components of the current development, e.g. by refinement. Refinement has the potential to decrease the complexity
of the proof process whilst allowing for traceability of requirements. The price to pay is to face possibly complex
mathematical theories and difficult proofs. The re-use of developed models and the structuring mechanisms available
in B help in decreasing the complexity.

3.2 The modelling framework
We do not recall oncepts of the Event B modelling language developed by J.-R. Abrial[4, 25]; we sketch the general
methodology we are applying. The ingredients for describing the modelling process based on events and model re-
finement can be found in [4, 25]. We assume that the goal is to solve a given problem described by a semi-formal
mathematical text and we assume that the problem is defined by a precondition and a postcondition[62]. The mod-
elling process starts by identifying the domain of the problem and it is expressed using the concept of CONTEXT. A
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CONTEXT PB

SETS
D

CONSTANTS
x, P, Q

AXIOMS
axm1 : x ∈ D /∗ x belongs to a general set of the problem domain ∗/
axm2 : P ⊆ D /∗ P is a set defining the precondition ∗/
axm3 : Q ⊆ D ×D /∗ Q is a binary relation over S defining the postcondition ∗/
axm4 : x ∈ P /∗ x is supposed to satisfy the precondition P ∗/
axm5 : ∀a·a ∈ P ⇒ (∃b·a 7→ b ∈ Q) /∗ there is at least one solution for each data x satisfying the

precondition P ∗/

END

Figure 3.1: Context for modelling the problem PB

Name Syntax Definition
Binary relation s ↔ t P(s× t)

Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}

Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}
Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s � r id(s); r

Co-restriction r � s r; id(s)
Anti-restriction s C− r (dom(r)− s) � r

Anti-co-restriction r B− s r � (ran(r)− s)
Image r[w] ran(w � r)

Overriding q C− r (dom(r) C− q) ∪ r
Partial Function s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}

Table 3.1: Set-theoretical notation for event B models

CONTEXT PB (see Figure 3.1) states the theoretical notions required to be able to express the problem statement in
a formal way. The CONTEXT PB declares

• a domain D which is the global set of possible values of the current system.

• a list of constants x, which is specifying the input of the system under development, P , which is the set of
values for x defining the precondition, and Q, which is a binary relation over D defining the postcondition of the
problem.

• a list of axioms assigns types to constants and adds knowledges to the RODIN environment; for instance, the
axiom 5 states that there is always a solution y, when the input value x satisfies the precondition P .

A CONTEXT may include a clause THEOREMS containing properties derivable in the theory defined by sets, contants
and axioms; theorems are discharged using the proof assistant of the tool RODIN. The underlying language is a set-
theoretical language partially given in Table 3.1. When an expression E is given, a well-definedness condition is
generated by the tool; this point llows us to check that some side conditions are true. For instance, the expression f(x)
generates a condition as x ∈ dom(f).
The first model provides the declaration of the procedure call. Variables y are call-by-reference parameters, constants
x are call-by-value parameters and carrier sets s are used to type informations and also for defining a generic procedure:
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MACHINE PREPOST

SEES PB

VARIABLES
y

INVARIANTS
inv1 : y ∈ D

EVENTS

INITIALISATION
BEGIN

act1 : y :∈ D
END

EVENT call
BEGIN

act1 : y : |(x ∈ P ∧ x 7→ y′ ∈ Q)
END

END

Figure 3.2: Machine defining the model for modelling the problem PB

procedure call(x; var y)

precondition y = y0 ∧ Init(y0, x, D) ∧
∼
P (x)

postcondition
∼
Q(x, y)

Figure 3.2 describes the complete model for the problem PB; it is expressd by a generic procedure stating the pre/post-
specification. The term procedure can be substituted by the term method. The current status of the development can be
represented as follow:

call(x,y) PREPOST PB-call−as−event -SEES

The statement of a given problem in the Event B modelling language is relatively direct, as long as we are able to
express the mathematical underlying theory using the mechanism of contexts. The existence of a solution y for each
value x is assumed to be an axiom; however, it would be better to derive the property as a theorem and it means that we
should develop a way to validate axioms to ensure the consistency of the underlying theory.
The next section illustrates the technique used for developing new algorithms. We think that it is a good way to teach
the design of algorithms. HOARE logic[48] provides a very interesting framework for dealing with specifications an
development and our work shows how the ingredients of HOARE logic can be used to provide a general framework for
developing sequential programs correct by construction. Event B and the RODIN plateform can be used to teach basic
notions like pre and postconditions, invaraint, verification and finally design-by-contract.

Methodological note: The challenge of the teacher is to relate the Event B notations to the notations of the pro-
gramming language. We have used the Event B notations in lectures on fixed-point theory and on the explanation
of sequential algorithms. It is then clear that we should provide more systematic rules for deriving algorithms. The
management of definitions using a tool, like RODIN, helps students to understand why a function call like f(x) gen-
erates conditions like x ∈ dom(f). Nobody can cheat with the tool. Moreover, when a tool is available for a free
download, it is really a teachermate.

The illustration of the methodology is given by developing algorithms for solving the shortstes path problem using a
dynamic programming paradigm. We will summarize the pattern in the last section of this chapter. We annotate our
text by messages containing references to a teacher.

3.3 The Shortest Path Problem

3.3.1 Summary of the problem
Floyd’s algorithm[42] computes the shortest distances of a graph and is based on an algorithmic design technique called
dynamic programming: simpler subproblems are first solved before the full problem is solved. It computes a distance
matrix from a cost matrix: the costs of the shortest path between each pair of vertices are in O(|V |3) time.

Methodological note: In the case of Floyd’s algorithm, there is a mathematical definition of the matrix we have
to compute from a starting state defining the initial basic link between nodes with cost. The function is called d and
should be first defined in a context of the problem.
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The set of nodes N is 1..n, where n is a constant value and the graph is simply represented by the distance function d
(d ∈ N ×N ×N 7→ N) and when the function is not defined, it means that there is no vertex between the two nodes.
The relation of the graph is defined as the domain of the function d. n is clearly greater than 1 and it means that the set
of nodes is not empty.
The distance function d is defined inductively from bottom to top a ccording to the dynamic programming principle and
the next axioms define this function:

• axm1 : d ∈ N ×N ×N 7→ N

• axm5 : ∀i·i ∈ N ⇒ 0 7→ i 7→ i ∈ dom(d) ∧ d(0 7→ i 7→ i) = 0

• axm6 : ∀i, j, k ·

0BB@
„

k − 1 7→ i 7→ j ∈ dom(d)
∧ (k − 1 7→ i 7→ k /∈ dom(d) ∨ k − 1 7→ k 7→ j /∈ dom(d))

«
⇒̀

k 7→ i 7→ j ∈ dom(d) ∧ d(k 7→ i 7→ j) = d(k − 1 7→ i 7→ j)
´

1CCA

• axm7 : ∀i, j, k ·

0BB@
k − 1 7→ i 7→ j ∈ dom(d)
∧ k − 1 7→ i 7→ k ∈ dom(d)
∧ k − 1 7→ k 7→ j ∈ dom(d)
∧ d(k − 1 7→ i 7→ j) ≤ d(k − 1 7→ i 7→ k) + d(k − 1 7→ k 7→ j)

1CCA
⇒„

k 7→ i 7→ j ∈ dom(d)
∧ d(k 7→ i 7→ j) = d(k − 1 7→ i 7→ j)

«

• axm8 : ∀i, j, k ·

0BB@
k − 1 7→ i 7→ j ∈ dom(d)
∧ k − 1 7→ i 7→ k ∈ dom(d)
∧ k − 1 7→ k 7→ j ∈ dom(d)
∧ d(k − 1 7→ i 7→ j) > d(k − 1 7→ i 7→ k) + d(k − 1 7→ k 7→ j)

1CCA
⇒„

k 7→ i 7→ j ∈ dom(d)
∧ d(k 7→ i 7→ j) = d(k − 1 7→ i 7→ k) + d(k − 1 7→ k 7→ j)

«

• axm9 : ∀i, j, k ·

0BBBB@
0@ k − 1 7→ i 7→ j /∈ dom(d)

∧ k − 1 7→ i 7→ k ∈ dom(d)
∧ k − 1 7→ k 7→ j ∈ dom(d)

1A
⇒
k 7→ i 7→ j ∈ dom(d)

1CCCCA

The optimality property is derived from the definition of d itself, since it starts by defining bottom elements and applies
an optimal principle summarized as follows: Di+1(a, b) = Min(Di(a, b), Di(a, i+1)+Di(i+1, b)) and means that
the distances in Di represent paths with intermediate vertices smaller than i; Di+1 is defined by comparing new paths
including i+1. Di is defined by a partial function over N×N×N . The partiality of d leads to some possible problems
for computing the minimum and when at least one term is not defined, we should define a specific definition for the
resulting term. Floyd’s algorithm provides an algoithmic process for obtaining a matrix of all shortest possible paths
with respect to a given initial matrix representing links between nodes together with their distance. Our first attempt
was based on the computation of a shortest path between to given nodes a and b. The resulting matrix is called R and a
boolean variable FD tells us if the shortest path exists. By the way, this first attempt is not the strict Floyd’s algorithm
but it will use the same principle of computation for the resulting matrix R.
The first step defines the context of the problem and the context is validated by the RODIN platform[69]. We decide
to design an algorithm which is computing the value of the shortest path between two given nodes but using the same
principle than Floyd’s algorithm.

Methodological note: The validation of the context SHORTESTPATH0 helps us to define carefully the function
d. The translation of mathematocal properties is made easier by the notion of partial function. The expression
Di+1(a, b) = Min(Di(a, b), Di(a, i + 1) + Di(i + 1, b)) hides possible underfinedness and generally the non-
existence of an edge between two nodes is defined by an extra value like ∞. We have to compute the following value
λi, j ∈ N.d(l 7→ i 7→ j) but the λ notation is not directly usable in the B notations. However, we are computing in
fact the value of d for the triple l 7→ i 7→ j because it seems to be simpler to state.
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3.3.2 Writing the function call
The first model provides the declaration of the procedure shortestpath. Variables D and FD are call-by-reference
parameters, constants l, a, b, D are call-by-value parameters:

procedure shortestpath(l, a, b, G; var D, FD)
precondition G = d0 ∧ FD = FALSE ∧ l > 0 ∧ a ∈ N ∧ b ∈ N
postcondition (FD = true ⇒ D = d(l, a, b))

We apply the Call as Event principle and we have to define a new model called SHORTESTPATH1 , which is defining
an event corresponding to the action of calling the procedure.

shortestpath(l,a,b,g,D,FD) SHORTESTPATH1 SHORTESTPATH0-call−as−event -SEES

Methodological note: The event is considered as a function call; we can explain at this time that the event is triggered
because the guard is true. It is not a precondition.

The new model SHORTESTPATH1 is using definitions of the context SHORTESTPATH0 . The event FLOYDKO models
the fact that the call of floyd is returning a value FALSE for FD: there is no path between a and b. The event
FLOYDOK returns the value TRUE for FDand the value of the minimal path from a to b. The two events are also
interpreted by a procedure which is called with respect to the existence of a path.

MACHINE SHORTESTPATH1
SEES SHORTESTPATH0

VARIABLES
D
F D

INVARIANTS
inv1 : D ∈ N × N 7→ N
inv2 : F D ∈ BOOL

EVENTS

INITIALISATION
BEGIN

act1 : D : |
„

D′ ∈ N × N 7→ N
∧ (∀i, j ·0 7→ i 7→ j ∈ dom(d)⇒ i 7→ j ∈ dom(D′) ∧ D′(i 7→ j) = d(0 7→ i 7→ j)))

«
act2 : F D := F ALSE

END

EVENT shortestpathOK
WHEN

grd1 : l 7→ a 7→ b ∈ dom(d)
THEN

act1 : D(a 7→ b) := d(l 7→ a 7→ b)
act2 : F D := T RUE

END

EVENT shortestpathKO
WHEN

grd1 : l 7→ a 7→ b /∈ dom(d)
THEN

act1 : F D := F ALSE
END

END

Now, we have two events really non-deterministic, since they are defined using the constant d which should be computed
in fact!. The solution is to refine the model SHORTESTPATH1 into a new model SHORTESTPATH2 which reduces non-
determinism.

Methodological note: It is very important to explain the difference between a flexible [53] variable and a rigid
variable. Rigid variable like d denotes values which are defined as mathematical static objects and flexible variables
denotes a name which is assigned to a value depending on the current state.

3.3.3 Refining the procedure call
The main idea is to unfold the calls or to refine the events to get a model which is closer to an algorithm. We introduce
several new variables:

• D and FD are both variables of the models SHORTESTPATH1 and SHORTESTPATH2 .

• c (inv1 : c ∈ C) expresses the control flow and the possible values of c are in the set C (axm15 : C =
{start, end, step1, step2, step3, finalstep}).

• D1, D2 and D3 are three variables storing the values required for computing the next value of D at a given step;
the values may be undefined and the undefinedness is controlled by the three variables FD1, FD2 and FD3.
Variables are typed according to the following part of the invariant:
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– inv2 : D1 ∈ Z

– inv3 : D2 ∈ Z

– inv4 : D3 ∈ Z

– inv5 : FD1 ∈ BOOL

– inv6 : FD2 ∈ BOOL

– inv7 : FD3 ∈ BOOL

We do not give more details for the invariant and we will give later the details of the invariant of the current model. First
we give the different events of the model SHORTESTPATH2 .
The event
INITIALISATION
is simply setting the variables as follows: act1 : D := D0, act2 : FD := FALSE, act3 : FD1 := FALSE,
act4 : FD2 := FALSE, act5 : FD3 := FALSE, act6 : D1 :∈ Z, act7 : D2 :∈ Z, act8 : D3 :∈ Z,
act10 : c := start.
Since d(0 7→ i 7→ j) models the existence of an elementary path from i to j, D0 is defined by the following axioms:

• axm12 : D0 ∈ N ×N 7→ N

• axm13 : dom(D0) = {i 7→ j|0 7→ i 7→ j ∈ dom(d)}

• axm14 : ∀i, j ·i 7→ j ∈ dom(D0)⇒D0(i 7→ j) = d(0 7→ i 7→ j)

Now, we can introduce refinement of existing events of SHORTESTPATH1 and new events which are not in the abstrac-
tion.

Refining events of SHORTESTPATH1

First, we give elements for competing the invariant; the typing informations can be completed as follows and they
correspond to an analysis of the definition of d. We introduce a new variable c which is expressing the control state and
whose possible values are given by the set C: C = {start, end, step1, step2, step3, finalstep}. We summarize the
different steps for computing D.

Methodological note: Using a graphical notation helps to communicate the meaning of control assertions. The steps
of the algorithm appear. Moreover, steps provide a guide for defining the invariant which is based on the construction
of d.

c = start

c ∈ {step1, step2, step3} c = finalstep c = end

����
�����

l6=0 floyd call

HHHH
HHHHHj

l=0

-floyd call return -analysis

Methodological note: The invariant is based on the decomposition into steps and each step analyses the definition
of values required for computing the minimum of D1 and D2 + D3. The invariant should take into account th
definedness of these values and the tool helps us to complete the invariant.

The analysis step provides a decision depending on the values of D1, D2 and D3, if they are defined. The boolean
expression FD1∧ (FD2∨ FD3) is the key for updating D(a 7→ b) and it is triggered , when the control is finalstep.
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Methodological note: The expression Di+1(a, b) = Min(Di(a, b), Di(a, i+1)+Di(i+1, b)) should be carefully
analysed and it allows us to derive specific conditions for structuring the algorithm.

When the control is at start:

• when l is initially equal to 0, D and d are equal too; D is defined when d is defined and reciprocally:

– inv20 : c = start ∧ a 7→ b /∈ dom(D) ∧ l = 0⇒ 0 7→ a 7→ b /∈ dom(d)

– inv8 :

0BBBBBB@

0@ c = start
∧ a 7→ b ∈ dom(D)
∧ l = 0

1A
⇒„

0 7→ a 7→ b ∈ dom(d)
∧D(a 7→ b) = d(0 7→ a 7→ b)

«

1CCCCCCA
• when l is not equal to 0 and there is no path from a to b with intermadiate nodes whose numbers is smaller than

l − 1, a 7→ b is not in D.

– inv34 :

0BBBBBB@

0BB@
c = start
∧ l 6= 0
∧ l − 1 7→ a 7→ b /∈ dom(d)
∧ l − 1 7→ l 7→ b /∈ dom(d)

1CCA
⇒
a 7→ b /∈ dom(D)

1CCCCCCA

– inv37 :

0BBBB@
0@ c = start

∧ l − 1 7→ a 7→ b /∈ dom(d)
∧ l − 1 7→ a 7→ l /∈ dom(d)

1A
⇒
a 7→ b /∈ dom(D)

1CCCCA
When the control is at end:
If the control is at end, the invariant enumerates the different cases for the resulting computation. The variable D should
contain the values correspondin to l.

• inv12 :

„
c = end
∧ FD = TRUE

«
⇒0@ a 7→ b ∈ dom(D)

∧ l 7→ a 7→ b ∈ dom(d)
∧D(a 7→ b) = d(l 7→ a 7→ b)

1A
• inv14 : c = end ∧ FD = FALSE ⇒ a 7→ b /∈ dom(D) ∧ l 7→ a 7→ b /∈ dom(d)

• inv18 : c = end ∧ l 7→ a 7→ b /∈ dom(d)⇒ FD = FALSE

• inv19 : c = end ∧ a 7→ b /∈ dom(D)⇒ FD = FALSE

• inv21 : c = end ∧ a 7→ b ∈ dom(D)⇒ FD = TRUE

When the control is at finalstep:
The invariant states that the variables FD1, FD2 and FD3 are related to the definition of the expression Min(D(a, b), D(a, l)+
D(l, b)). Min(D(a, b), D(a, l) + D(l, b)). is defined,if, end only, if FD1 ∧ (FD2 ∨ FD3). The invariant explores
the different cases for the definition of D for the given pairs. Moreover, the values are stired in the variables D1, D2
and D3 when defined.

• inv11 :
c = finalstep ∧ FD3 = TRUE
⇒
l − 1 7→ l 7→ b ∈ dom(d) ∧ D3 = d(l − 1 7→ l 7→ b)
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• inv15 :
c = finalstep ∧ FD1 = TRUE
⇒
l − 1 7→ a 7→ b ∈ dom(d) ∧ D1 = d(l − 1 7→ a 7→ b)

• inv16 :
c = finalstep ∧ FD2 = TRUE
⇒
l − 1 7→ a 7→ l ∈ dom(d) ∧ D2 = d(l − 1 7→ a 7→ l)

• inv13 :

0BBBBBB@

0@ c = finalstep
∧ FD1 = FALSE
∧ (FD2 = FALSE ∨ FD3 = FALSE)

1A
⇒„

l 7→ a 7→ b /∈ dom(d)
∧ a 7→ b /∈ dom(D)

«

1CCCCCCA
• inv24 : c = finalstep ∧ FD3 = FALSE ⇒ l − 1 7→ l 7→ b /∈ dom(d)

• inv27 : c = finalstep ∧ FD2 = FALSE ⇒ l − 1 7→ a 7→ l /∈ dom(d)

• inv29 : c = finalstep ∧ FD1 = FALSE ⇒ l − 1 7→ a 7→ b /∈ dom(d)

• inv38 :

0BBBBBBBB@

0BB@
c = finalstep
∧ FD1 = TRUE
∧ (FD2 = FALSE ∨ FD3 = FALSE)

1CCA
⇒„

l 7→ a 7→ b ∈ dom(d)
∧ d(l 7→ a 7→ b) = d(l − 1 7→ a 7→ b)

«

1CCCCCCCCA
The diagram shows that shortestpath is made up of three steps.

c = step1

c = step2 c = step3 c = finalstep
?

evaluation FD1,D1

-evaluation FD2,D2 -evaluation FD3,D3

When the conrol is in {step1, step2, step3}:

• When the control is in {step1, step2, step3}, since inv28 : c 6= start ∧ c 6= end⇒ l 6= 0 , l is not equal to
0.

• When the control is at step1, l is not equal to 0. There are two conditions for the undefinedness of D in
relationship to d.

– inv33 :
c = step1 ∧ l − 1 7→ a 7→ b /∈ dom(d) ∧ l − 1 7→ l 7→ b /∈ dom(d)
⇒
a 7→ b /∈ dom(D)

– inv36 :
c = step1 ∧ l − 1 7→ a 7→ b /∈ dom(d) ∧ l − 1 7→ a 7→ l /∈ dom(d)
⇒
a 7→ b /∈ dom(D)

• When the control is in step2, either the evaluation of D1 is successful or not.
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– inv9 : c = step2 ∧ FD1 = TRUE ⇒ l − 1 7→ a 7→ b ∈ dom(d) ∧ D1 = d(l − 1 7→ a 7→ b)

– inv22 : c = step2 ∧ FD1 = FALSE ⇒ l − 1 7→ a 7→ b /∈ dom(d)

– inv32 :
c = step2 ∧ FD1 = FALSE ∧ l − 1 7→ l 7→ b /∈ dom(d)
⇒
a 7→ b /∈ dom(D)

– inv35 :
c = step2 ∧ l − 1 7→ a 7→ l /∈ dom(d) ∧ FD1 = FALSE
⇒
a 7→ b /∈ dom(D)

• When the control is in step3, either the evaluation of D2 is successful or not.

– inv10 :
c = step3 ∧ FD2 = TRUE
⇒
l − 1 7→ a 7→ l ∈ dom(d) ∧ D2 = d(l − 1 7→ a 7→ l)

– inv17 :
c = step3 ∧ FD1 = TRUE
⇒
l − 1 7→ a 7→ b ∈ dom(d) ∧ D1 = d(l − 1 7→ a 7→ b)

– inv23 : c = step3 ∧ FD2 = FALSE ⇒ l − 1 7→ a 7→ l /∈ dom(d)

– inv25 : c = step3 ∧ FD1 = FALSE ⇒ l − 1 7→ a 7→ b /∈ dom(d)

– inv26 : c 6= finalstep ∧ c 6= end ∧ 0 7→ a 7→ b /∈ dom(d)⇒ a 7→ b /∈ dom(D)

– inv30 : c = step3 ∧ FD1 = FALSE ∧ FD2 = FALSE ⇒ a 7→ b /∈ dom(D)

– inv31 :
c = step3 ∧ FD1 = FALSE ∧ l − 1 7→ l 7→ b /∈ dom(d)
⇒
a 7→ b /∈ dom(D)

Refining shortestpathOK Now, we define each transition between the different steps according to the invariant.
We consider severall possible cases depending on l and other conditions. When the value of l is 0 and when D is defined
for the pair a 7→ b, it means that there is a path between a and b without any intermediate node. It is the basic case and
one returns the value TRUE for FD. The control is set to end, since the procedure is completed:

l = 0 ∧ c = start

l = 0 ∧ c = start ∧ a 7→ b ∈ dom(D)

l = 0 ∧ c = end ∧ Fpath = TRUE

����
�������

elementarypath

?

floydOK
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EVENT shortestpathOK
REFINES shortestpathOK

WHEN
grd2 : l = 0
grd1 : a 7→ b ∈ dom(D)
grd3 : c = start

THEN
act2 : FD := TRUE
act3 : c := end

END

When the control expresses the accessibility of the last control point (c = finalstep) and when the three values D1,
D2 and D3 are defined and satisfy the condition D1 ≤ D2 + D3, we can update D in a 7→ b by D1. In fact, the value
is not modified. The control is set to the final control point called end. There is a path and FD is set to TRUE.

EVENT shortestpathcallOKmin
REFINES shortestpathOK

WHEN
grd1 : FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE
grd2 : D1 ≤ D2 + D3
grd3 : c = finalstep

THEN
act1 : D(a 7→ b) := D1
act2 : FD := TRUE
act3 : c := end

END

The next case is stating that there is a new path from a to b, which is shortest than the current one (grd3 : D1 >
D2 + D3) and we should update D by the new value D2 + D3.

EVENT shortestpathcallOKmax
REFINES shortestpathOK

WHEN
grd1 : FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE
grd2 : c = finalstep
grd3 : D1 > D2 + D3

THEN
act1 : D(a 7→ b) := D2 + D3
act2 : c := end
act3 : FD := TRUE

END

The next possible case is that the value D1 is not defined; it means that there is not yet a path from a to b and we have
discovered that there is a node which can be reached from a and which can reach b. Hence, the variable D is defined in
a 7→ b by the value D2 + D2.

EVENT shortestpathFD2FD3
REFINES shortestpathOK

WHEN
grd1 : c = finalstep
grd2 : FD1 = FALSE ∧ FD2 = TRUE ∧ FD3 = TRUE

THEN
act1 : D(a 7→ b) := D2 + D3
act2 : FD := TRUE
act3 : c := end

END
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Finally, when either D2 or D3 is not defined, the value of D is not modified and remains equal to D1.

EVENT shortestpathFD1
REFINES shortestpathOK

WHEN
grd1 : c = finalstep
grd2 : FD1 = TRUE ∧ (FD1 = FALSE ∨ FD2 = FALSE)

THEN
act1 : D(a 7→ b) := D1
act2 : c := end
act3 : FD := TRUE

END

The refinement of abstract events should be completed by events which compute the values D1, D2 and D3.

Refining shortestpathKO We consider severall possible cases depending on l and other conditions.
When the value of l is 0 and when D is not defined for the pair a 7→ b, it means that there is no elementary path between
a and b. It is the basic case and one returns the value FALSE for FD. The control is set to end, since the procedure is
completed:

l = 0 ∧ c = start

l = 0 ∧ c = start ∧ a 7→ b /∈ dom(D)

l = 0 ∧ c = end ∧ Fpath = FALSE

H
H

HH
HH

HH
HHj

noelementarypath

?

floydKO

EVENT shortestpathKO
REFINES shortestpathKO

WHEN
grd2 : l = 0
grd1 : a 7→ b /∈ dom(D)
grd3 : c = start

THEN
act1 : FD := FALSE
act2 : c := end

END

When the value of l is not 0 and when D1 is not defined and either D2 is not defined, or D3 is not defined, for the pair
a 7→ b, it means that there is no path between a and b. One returns the value FALSE for FD. The control is set to end,
since the procedure is completed:
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EVENT shortestpathKOelse
REFINES shortestpathKO

WHEN
grd1 : c = finalstep
grd2 : FD1 = FALSE ∧ (FD2 = FALSE ∨ FD2 = FALSE)

THEN
act1 : c := end
act2 : FD := FALSE

END

Introducing new events in SHORTESTPATH2

The first new event models the calling step of the procedure floyd and it transfers the control to the control point
step1.

EVENT shortestpathcallone
WHEN

grd1 : l > 0
grd2 : c = start

THEN
act1 : c := step1

END

Now, we consider the three steps for computing D1, D2 and D3.

Calling the procedure floyd for evaluating D1 and FD1 The event shortestpathcalltwook simulates
the procedure for computing D1, which is d(l − 1 7→ a 7→ b) and which is successfully computed, since FD1 is
TRUE. The event shortestpathcalltwoko simulates the procedure for computing D1, which is d(l − 1 7→ a 7→ b)
and which is unsuccessfully computed, since FD1 is FALSE.

EVENT
floydcalltwook

WHEN
grd1 : c = step1
grd2 : l − 1 7→ a 7→ b ∈ dom(d)

THEN
act1 : D1 := d(l − 1 7→ a 7→ b)
act2 : FD1 := TRUE
act3 : c := step2

END

EVENT shortestpathcalltwoko
WHEN

grd1 : l − 1 7→ a 7→ b /∈ dom(d)
grd2 : c = step1

THEN
act1 : FD1 := FALSE
act2 : c := step2

END

Calling the procedure floyd for evaluating D2 and FD2 The event shortestpathcallthreeok simulates
the procedure for computing D2, which is d(l − 1 7→ a 7→ l) and which is successfully computed, since FD2 is
TRUE. The event shortestpathcallthreeko simulates the procedure for computing D2, which is d(l − 1 7→ a 7→ l)
and which is unsuccessfully computed, since FD2 is FALSE.

EVENT shortestpathcallthreeok
WHEN

grd1 : c = step2
grd2 : l − 1 7→ a 7→ l ∈ dom(d)

THEN
act1 : D2 := d(l − 1 7→ a 7→ l)
act2 : FD2 := TRUE
act3 : c := step3

END

EVENT shortestpathcallthreeko
WHEN

grd1 : c = step2
grd2 : l − 1 7→ a 7→ l /∈ dom(d)

THEN
act1 : c := step3
act2 : FD2 := FALSE

END
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Calling the procedure floyd for evaluating D3 and FD3 The event shortestpathcallfourok simulates
the procedure for computing D3, which is d(l−1 7→ l 7→ b) and which is successfully computed, since FD3 is TRUE.
The event shortestpathcallfourko simulates the procedure for computing D3, which is d(l−1 7→ l 7→ b) and which
is unsuccessfully computed, since FD3 is FALSE.

EVENT shortestpathcallfourok
WHEN

grd1 : c = step3
grd2 : l − 1 7→ l 7→ b ∈ dom(d)

THEN
act1 : c := finalstep
act2 : D3 := d(l − 1 7→ l 7→ b)
act3 : FD3 := TRUE

END

EVENT shortestpathcallfourko
WHEN

grd1 : c = step3
grd2 : l − 1 7→ l 7→ b /∈ dom(d)

THEN
act1 : FD3 := FALSE
act2 : c := finalstep

END

3.3.4 Producing the shortestpath procedure

The shortestpath procedure can be derived from the list of events of the model SHORTESTPATH2 and we structure
events into conventional programming structures like while or if statements. J.-R. Abrial[5] has proposed several
rules for producing algorithmic statements. The next diagram gives the complete description of the process we have
followed:

shortestpath(l,a,b,G,D,FD) SHORTESTPATH1 SHORTESTPATH0

floyd SHORTESTPATH2
?

call

-call−as−event

?

REFINEMENT

-SEES

� mapping
�

�����
�����

��*

SEES

The procedure header is shortestpath(l,a,b,G,D,FD) and the text of the procedure is given by the algo-
rithms 1 and 2.
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Algorithm 3: Algorithm Version 1
precondition : l ∈ 1..n∧
postcondition : D,FD

local variables: FD1, FD2, FD3 ∈ BOOL

FD := FALSE;
FD1 := FALSE;
FD2 := FALSE;
FD3 := FALSE;
if l = 0 then

if (a, b) ∈ dom(D) then
FD := TRUE;
R := D[a, b];

else
FD := FALSE;

else
floyd(l − 1, a, b,D1, FD1); floyd(l − 1, a, l,D2, FD2); floyd(l − 1, l, b, D3, FD3);
case FD1 ∧ FD2 ∧ FD3

if D1 < D2 + D3 then
R := D1;

else
R := D2 + D3;

;
FD := TRUE;

;
case FD1 ∧ (¬FD2 ∨ ¬FD3)

R := D1;
FD := TRUE;

;
case ¬FD1 ∧ (FD2 ∧ FD3)

R := D2 + D3;
FD := TRUE;

;
case ¬FD1 ∧ (¬FD2 ∨ ¬FD3)

FD := FALSE;

;
;

The two next frames are containing C codes produced for the two algorithms 3.3.4 and 3.3.4; we have produced the C
codes by hand and we have forgotten that C arrays starts by 0 and it means that our initial calls were wrongly written.
It is clear that we need a way to produce codes in a mechanized way. Moreover, there are some conditions to check and
some interactions to manage with the user to help in choices.

Methodological note: It is the time to recall that we are planning to use a real programming language and that
we should represent abstract objects by concrete objects. It would be better to add informations on the integers of
computer scientists and it is easy to add the constraint.
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/∗ N = 1 . . n−1 ∗/
void s h o r t e s t p a t h ( i n t l , i n t a , i n t b , i n t g [ ] [ n ] , i n t ∗D, i n t ∗FD)
{

i n t D1 , D2 , D3 , FD1 , FD2 , FD3 ;
∗FD = 0 ; FD1=0;FD2=0;FD3=0;
i f ( l ==0)
{

i f ( g [ a ] [ b ] != NONE)
{ ∗FD = 1 ; ∗D = g [ a ] [ b ] ;}

}
e l s e
{

s h o r t e s t p a t h ( l−1,a , b , g ,&D1,&FD1 ) ; s h o r t e s t p a t h ( l−1,a , l , g ,&D2,&FD2 ) ;
s h o r t e s t p a t h ( l−1, l , b , g ,&D3,&FD3 ) ;

i f ( FD1 == 1 && ( FD2==1 && FD3==1) )
{ i f ( D1 < D2+D3 )

{∗D= D1;}
e l s e
{∗D=D2+D3;} ;
∗FD = 1 ;

}
e l s e i f ( FD1==1 && ( FD2==0 || FD3==0) )
{∗D= D1;∗FD = 1;}

e l s e i f ( FD1==0 && ( FD2 == 1 && FD3==1) ) {∗D=D2+D3 ; ∗FD=1;}
e l s e /∗ (FD1==0 && ( FD2==0 || FD3==0)) ∗/ { ∗FD = 0;}

}
}

/∗ N = 1 . . n−1 ∗/
void s h o r t e s t p a t h ( i n t l , i n t a , i n t b , i n t g [ ] [ n ] , i n t ∗D, i n t ∗FD)
{

i n t D1 , D2 , D3 , FD1 , FD2 , FD3 ;

∗FD = 0 ; FD1=0;FD2=0;FD3=0;
i f ( l ==0)
{

i f ( g [ a ] [ b ] != NONE)
{ ∗FD = 1 ; ∗D = g [ a ] [ b ] ;}

}
e l s e
{

s h o r t e s t p a t h ( l−1,a , b , g ,&D1,&FD1 ) ;
i f ( FD1 == 1) {

s h o r t e s t p a t h ( l−1,a , l , g ,&D2,&FD2 ) ;
i f ( FD2==1) {

s h o r t e s t p a t h ( l−1, l , b , g ,&D3,&FD3 ) ;
i f ( FD3==1) {
i f ( D1 < D2+D3 )
{∗D= D1;}

e l s e
{∗D=D2+D3;} ;

∗FD = 1;}
e l s e
{∗D=D1;∗FD=1;}}

e l s e
{∗D=D1;∗FD=1;}}

e l s e
{

i f ( FD2 == 1 && FD3==1) {∗D=D2+D3 ; ∗FD=1;}
e l s e
{∗FD=0;};}

}}

The complete development has a cost related to proof obligations. The refinement generates 493 proof obligations
and 328 proof obligations were automaically discharged. 165 proof obligations were manually discharged with minor
interactions.

model Total Auto Manual Reviewed Undischarged
SHORTESTPATH0 8 8 0 0 0
SHORTESTPATH1 5 4 1 0 0
SHORTESTPATH2 493 328 165 0 0

Global 506 340 166 0 0

Methodological note: Proof obligations are not very difficult to discharge;there were based on the properties of d
and it was boring to click the tool for discharging mechanichally them. Efforts were made on the definition of d.

Now, it turns that our goal was to get Floyd’s algorithm and we have an algorithm for computing the existence or the
non existence of a shortest path between two nodes. The next section address the question.

3.4 Floyd’s algorithm
We can use the developed algorithm to produce a result equivalent to Floyd’s execution. In fact, we apply our algorithm
on each pair of possible nodes and we store it in a matrix. The algorithm 3.4 describes the real algorithm which can be
found in any lecture notes.
Now, we are considering the problem of derivation of this solution. In fact, the development starts from the same
context. Two new constants are defined namely DF and Daf . Df is the final value of the matrix D correponding to d
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Algorithm 4: Algorithm Version 2
precondition : l ∈ 1..n ∧ a, b ∈ N ∧G ∈ N ×N 7→ N

postcondition : D,FD

local variables: FD1, FD2, FD3 ∈ BOOL

FD := FALSE;
FD1 := FALSE;
FD2 := FALSE;
FD3 := FALSE;
if l = 0 then

if (a, b) ∈ dom(D) then
FD := TRUE;
R := D[a, b];

else
FD := FALSE;

else
shortestpath(l − 1, a, b,D1, FD1);
if FD1 then

shortestpath(l − 1, a, l,D2, FD2);
if FD2 then

shortestpath(l − 1, l, b, D3, FD3);
if FD3 then

if D1 < D2 + D3 then
R := D1;

else
R := D2 + D3;

;
FD := TRUE;

else
R := D1;
FD := TRUE;

;
else

R := D1;
FD := TRUE;

;
else

if FD2 ∧ FD3 then
R := D2 + D3;
FD := TRUE;

else
FD := FALSE;

;

;
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Algorithm 5: Floyd’s Algorithm Wikipedia
precondition : l ∈ 1..n ∧matrix ∈ N ×N 7→ N

postcondition : matrix ∈ N ×N 7→ N∧
local variables: FD1, FD2, FD3 ∈ BOOL

foreach k = 1; k <= n; k + + do
foreach i = 1; i <= n; i + + do

foreach j = 1; j <= n; j + + do
if matrix[i][j] > (matrix[i][k] + matrix[k][j]) then

matrix[i, j] = matrix[i][k] + matrix[k][j]

for the value l. C is simpler and is defined as follows: axm15 : C = {start, end, call, finalstep} .
New axioms define new constants:

• axm39 : Df ∈ N ×N 7→N

• axm40 : dom(Df) = {u 7→ v|l 7→ u 7→ v ∈ dom(d)}

• axm41 : ∀u, v ·u 7→ v ∈ dom(Df)⇒Df(u 7→ v) = d(l 7→ u 7→ v)

• axm42 : Daf ∈ N ×N 7→N

• axm43 : l 6= 0⇒ dom(Daf) = {u 7→ v|l − 1 7→ u 7→ v ∈ dom(d)}

• axm44 : l 6= 0⇒ (∀u, v ·u 7→ v ∈ dom(Daf)⇒Daf(u 7→ v) = d(l − 1 7→ u 7→ v))

• axm22 : l = 0⇒Df = D0

• axm23 : l 6= 0⇒D0 ⊆ Daf

• axm24 : l 6= 0⇒Daf ⊆ Df

• axm25 : l 6= 0⇒ (∀u, v ·u 7→ v ∈ dom(Daf)⇒Daf(u 7→ v) = d(l − 1 7→ u 7→ v))

• axm26 : ∀u, v ·u 7→ v ∈ dom(Df)⇒Df(u 7→ v) = d(l 7→ u 7→ v)

• axm27 : ∀u, v ·u 7→ v ∈ dom(D0)⇒D0(u 7→ v) = d(0 7→ u 7→ v)

• axm28 :

`
l 6= 0

´
⇒

∀u, v, w·

0BB@
w 7→ v ∈ dom(Df)
∧ w 7→ u ∈ dom(Daf)
∧ u 7→ v ∈ dom(Daf)
∧Daf(w 7→ v) > Daf(w 7→ u) + Daf(u 7→ v)

1CCA
The new model FLOYD1 assigns the value Df to D. The new relationship between models and call is given by the
next diagram:

floyd FLOYD1 FLOYD0-call−as−event -SEES

The problem is to refine the model FLOYD1 to get a list of events which lead to an algorithm. The two constants Df
and Daf are used to state the final step and the intermediate step:
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• Daf is the result of the call of the under construction algorithm for l − 1

• Df is the final value which is computed from Daf .

We obtain the following diagram for expressing events corresponding to Floyd’s algorithm:

c = start ∧ l ∈ N ∧D = D0

c = start ∧ l 6= 0 ∧D = D0 c = start ∧ l = 0 ∧D = D0

c = call ∧ l 6= 0 ∧D = D0

c = finalcall ∧ l 6= 0∧
TD = Daf ∧D = D0

c = end ∧ l 6= 0∧
TD = Daf ∧D = Df

c = end ∧ l = 0 ∧D = Df

c = end ∧D = Df

�
�

�
�

�
�

�
�

�
���

l6=0 floyd call

H
H

H
H

H
H

H
H

H
HHj

l=0

?

tofloydcall

?

floyd0

?

floycall

?

floyd−ok

HHH
HHHHHHj

l6=0

���
�����

���

l=0

The new model has three variables: c, D, TD.

• inv6 : TD ∈ N ×N 7→N

• inv1 : c ∈ C

• inv2 : c = start⇒ TD = D0 ∧ D = D0

• inv3 : c = end⇒D = Df

• inv4 : c = call⇒ TD = D0 ∧ l 6= 0

• inv5 : c = finalstep⇒ TD = Daf ∧ l 6= 0
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Initial conditions over variables are defined by act1 : D := D0, act2 : c := start, act3 : TD := D0. Events are very
simple to write from the diagram:

EVENT floyd-ok
REFINES floyd

WHEN
grd1 : c = finalstep

THEN

act1 : D, c : |

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

`
D′ ∈ N ×N 7→N ∧ c′ = end

´

∧

0BBBBBBBB@
∀w, v ·

0BBBBBBBB@

0BBBB@
w ∈ N ∧ v ∈ N
∧ w 7→ v ∈ dom(TD)
∧ w 7→ l ∈ dom(TD)
∧ l 7→ v ∈ dom(TD)
∧ TD(w 7→ v) > TD(w 7→ l) + TD(l 7→ v)

1CCCCA
⇒
D′(w 7→ v) = TD(w 7→ l) + TD(l 7→ v)

1CCCCCCCCA

1CCCCCCCCA

∧

0BBBBBBBB@
∀w, v ·

0BBBBBBBB@

0BB@
w 7→ v ∈ dom(TD)
∧ w 7→ l ∈ dom(TD)
∧ l 7→ v ∈ dom(TD)
∧ TD(w 7→ v) ≤ TD(w 7→ l) + TD(l 7→ v)

1CCA
⇒„

w 7→ v ∈ dom(D′)
∧D′(w 7→ v) = TD(w 7→ v)

«

1CCCCCCCCA

1CCCCCCCCA

∧

0BBBB@ ∀u, v ·

0BBBB@
„

u 7→ v ∈ dom(TD)
∧ (u 7→ l /∈ dom(TD) ∨ l 7→ v /∈ dom(TD))

«
⇒„

u 7→ v ∈ dom(D′)
∧D′(u 7→ v) = TD(u 7→ v)

«
1CCCCA

1CCCCA

∧

0BBBBBB@ ∀u, v ·

0BBBBBB@

0@ u 7→ v /∈ dom(TD)
∧ (u 7→ l ∈ dom(TD)
∧ l 7→ v ∈ dom(TD))

1A
⇒„

u 7→ v ∈ dom(D′)
∧D′(u 7→ v) = TD(u 7→ l) + TD(l 7→ v)

«

1CCCCCCA

1CCCCCCA
∧

0BB@ ∀u, v ·

0BB@
„

u 7→ v /∈ dom(TD)
∧ (u 7→ l /∈ dom(TD) ∨ l 7→ v /∈ dom(TD))

«
⇒
u 7→ v /∈ dom(D′)

1CCA
1CCA

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
END

The event
EVENT floyd-ok
uses a structure of Event B, which is assigning a value to variables and values are in a set. The set can be either empty,
a singleton or a general set. In our case, the statement defines only one possible singleton and then the statement is
clearly deterministic. However, we can subtitute the event by a call of a new procedure and we should starts a new
development in another development using the same principle. We get the nestesd loops.

The two algorithms 3.4 and 3.4 are produced from the set of events. The recursive version is simply derived using the
control points. The second algorithm is the iterative version which is produced by applying the classical transformations
over recursive algorithms. The function nld is derived from an independant development by applying the same pattern.

EVENT floyd0
REFINES floyd

WHEN
grd1 : c = start ∧ l = 0

THEN
act2 : c := end

END
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EVENT tofloydcall
WHEN

grd1 : c = start ∧ l > 0
THEN

act1 : c := call
END

EVENT floydcall
WHEN

grd1 : c = call
THEN

act1 : c := finalstep
act2 : TD := Daf

END

Algorithm 6: Recursive algorithm floyd
precondition : l ∈ 1..n ∧G

postcondition : D

local variables: TD

TD := D0;
if l 6= 0 then

floyd(l − 1, G, TD);
D := nld(TD);

else
D := TD;

;

Algorithm 7: Non-recursive algorithm floyd
precondition : l ∈ 1..n ∧G

postcondition : D

local variables: TD

TD := D0;
l := 0;
while l 6= 0 do

TD := d(TD);

;
D := TD;

What we have learnt from the case study is summarized as follows:

1. Developing a first abstract one-shot model using pre/post-condition. It provides the declarations part of the
procedure (method) related to the one-shot model. The basic structure to express is the function d which the
key of the problem. Constants of the model are defined as call-by-value parameters and variable of the model
are call-by-reference parameters, The context SHORTESTPATH0 is clearly reusable and we have reused it for the
effective algorithm of Floyd.

2. Refining the abstract model to obtain the body of procedure. New variables are defined as local variables. The
refinement introduces control states which provide a way to structure the body of the procedure. We have clearly
the first control point namely start and the last control point namely end. The diagram helps to decompose the
procedure into steps of the call and a special control point called call is introduced. The main question is to
obtain a deterministic transition system in the new refinement model.

3. If there are still remaining non-deterministic events, we can eliminate the non-deterministic events by developing
each non-deterministic event in a specific B development starting by the statement of a new problem expressed
by the non-deterministic event itself. In fact, it is what is done with the last version of Floyd’s algorithm and the
event computing D′ from TD is clearly refined to get two nested loops.

4. Proof obligations are relatively easy to check because the invariant is written by a list of properties of d according
to d. Evene if the number of manual proof obligations is high, it was very easy to discharge them using the prover
and to reuse former intercative ones.
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5. The translation of Event B model into a C program was carried out by hand and we did a mistake. We forgot
that C arrays are starting the index by 0 and it leads to a bad call. We should mechanize this step to avoid this
mistake.

3.5 Summary of the pattern
The pattern is simply defined by the following diagram:

call M1 M1

procedure M2
?

call

-call−as−event

?

REFINEMENT

-SEES

�mapping
�

�
�

�
�3

SEES

• call is the call statement which is defining the pre and post conditions over formal parameters.

• M0 is a context defining the mathematical framework of the problem to solve.

• M1 is a machine which is defining the call as an event instance.

• M2 is a refinement of M1; if an event of the refinement is non-deterministic, we are defining a new call of new
procedure and the pattern should be reapplied in this case. The refinement allows us to introduce control points,
which can be usd to generate an algorithm from the M2 machine.

• The mapping transformation models the generation of an algorithm from a list of events.

• The call-as-event transformation is simply a translation or an embedding of the problem in an Evenet B model.

We have developed the following case studies using the pattern:

• Binomials coefficients

• Sorting by selection [28]

• Sorting by insertion

A tool is under development for supporting the application of the pattern and the generation of the algorithm by a
mechanical process. The first transformation is very technical, since it requires to state the problem and the mathe-
matical expression of the mathematical environment The main benefit is thye fact the resulting algorithm is correct by
construction according to the pre and post conditions.
The technique of developmment is a top/down approach, which is clearly well known in earlier works of Dijkstra[37,
62], and to use the refinement for controlling the correctness of the resulting algorithm. It relies on a more fundamental
question related to the notion of problem to solve.
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Chapter 4

The access control pattern
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We address the proof-based development of (system) models satisfying a security policy. The security policy is ex-
pressed in OrBAC or RBAC models, which allows one to state permissions and prohibitions on actions and activities
and belongs to the family of role-based access control formalisms. The main question is to validate the link between
the security policy expressed in OrBAC and the resulting system; a first abstract B model is derived from the OrBAC
specification of the security policy and then the model is refined to introduce properties that can be expressed in OrBAC.
The refinement guarantees that the resulting B (system) model satisfies the security policy. We present a development
pattern of a system with resepct to a security policy and it can be instnatiated later for a given security policy.
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4.1 Introduction
One of the most challenging problems in managing large networks is the complexity of security administration. Role-
based access control has become the predominant model for advanced access control because it reduces the complexity
and cost of security administration in large networked applications. Others models, like OrBAC [1], have been in-
troduced by providing a structure based on the application domain and by introducing the concept of organisation.
Networks or software systems can be abstracted by action systems or event B models; however, security requirements
should be integrated into the proof-based design of such systems and we address the integration of security policy - ex-
pressed in a security model OrBAC - in the final systems. This leads us to deal with security properties like permissions
and prohibitions. We leave obligations as out of the scope of the current work. This study consists to elaborate a pattern
for modelling systems which control the how a set of subjects perform actions on a set of objects defined in the system.
J.-R. Abrial [2] contributes to the access control problem: the study consists to elaborate a system which controls the
access to a building at differents persons. He does not refer to security model but influences our current work.

4.1.1 Integration of security policies in system development
When a system is under development, it is necessary to consider requirements documentation. The document is either
written in a natural language, or in a semi-formal language, or in a formal language and it may include different aspects
or views of the target system. Security policy is a possible part of this document and it may be expressed in a specific
modelling language designed for expressing permissions, prohibitions, recommendations, obligations, . . . related to the
target system. Now, a key question is to ensure that the resulting system conforms to the security policy and it appears to
us that in the existing systems the link between the system and its security policy is not clearly established and formally
validated, as stated by the figure 4.1: the satisfaction relation should be established in a formal way. We illustrate the
problem to be solved by considering two modelling languages:

• the OrBAC modelling language for security policy

• the event B modelling language for systems

Another important point is that we focus on the access control problem and in the figure 4.2, we describe several steps
to obtain an implementation of the system from the statement of the security policy:

1. Generating a B model OM from the security policy O: the translation relation is explained in the current paper
and can be mechanized.

2. Generating a B model RM by refining OM and by adding progressively details of the document which are not
yet integrated into the current model: the refinement of B models is the key concept ensuring the validation of
the satisfaction relation..

3. Writing a system model SYS from the last B model: the implementation of a refined B model into a system
language can be directed by transformations over events.

Security Policy O

System Model SYS

satisfaction

Figure 4.1: The satisfaction relation

The goal of this work is to elaborate a proof-based developement pattern of models satisfying a security policy. The
security policy can be expressed in a formal language and it is possible to analyse the security policy, especially the
consistency of the policy. The refinement ensures the correctness of the satisfaction relation: the system satisfies the
security policy.
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Security Policy O

System Model SYS

satisfaction refinement

translation

implementation

B model OM

B model RM

Figure 4.2: Global process description

4.2 Models for Security Policy
The interaction of people with IT systems generate various security needs to guarantee that each system user benefits of
its advantages without trespassing on someonelse’s rights. These needs vary according to the activity field required. It
could be regarding: Confidentiality (Non disclosure of sensitive information to non authorised persons), Integrity (Non
alteration of sensitive information), Availability (Supply of information to users according to their rights to access these
information), Auditability (The ability to trace and determine the actions carried out in the system).
Such requirements usually result in setting up an access control model that expresses security policies, defining for each
user his permissions, prohibitions and obligations. Users (or subjects) are active entities operating on objects (passive
entities) of the system.
Several access control models have been proposed: DAC [54], MAC [13, 14], RBAC [40, 70, 44] or OrBAC [1]. In the
Role- Based access control model, the RBAC model, security policy does not directly grant permissions to users but to
roles [40]. A role is an abstraction for users. Each user is assigned to one or several roles, and will inherit permissions
or prohibitions associated with these roles. Such a security model states security properties on the target system and on
a hidden state of the current system. The hidden state is clearly stating dynamic properties related to permissions and
prohibitions. The classical role-based models have no explicit state variable; the context information might be used to
express the state changes but we think that a state-based approach like B provides a simpler framework for integrating
security policy specification in the design of a system. Moreover, the refinement may help us in introducing security
properties in a proof-based step.

4.2.1 Organization-Based Access Control model: OrBAC
The OrBAC (Organization-Based Access Control model) for modelling the security policies is an extension of the
RBAC model. OrBAC is based on the concept of organization. The specification of the security policy is completely
parametrized by the organization such that it is possible to handle simultaneously several security policies associated
with different organizations [1].
Another advantage of the OrBAC model compared to other models is that it makes it possible to express contextual
permissions or prohibitions.
OrBAC takes again the concept of role such as it was defined in RBAC. Users are assigned to roles and inherit their
privileges. The concept of view (or object’s groups) is also introduced as an abstraction of the objects of the system.
The construction of these groups of objects must be semantically well founded, this construction is related to the way
in which the various roles carry out various actions on these objects. It should be noted that there are similarities with
the concept of view in relational databases where it is a question of gathering objects which have similar properties.
Just as for the objects, the actions are also gathered in activities, this implies that there are two levels of abstraction in
OrBAC:

• Abstract level: roles (doctor, nurse), activities (management) and views (patient files, administration files) of the
system on which various permissions and prohibitions are expressed.

• Concrete level: subjects (Paul, Peter, John), actions (create, delete) and objects (patient file1, patient file2) of
the system.

Subjects, actions and objects are respectively assigned to roles, activities and views by relations defined over these
entities(see figure 4.3). We detail relations in the next sub-section.
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Empower, Use and Consider

Assignment of subjects to roles: subjects are assigned to one or more roles in order to define their privileges. Contrary
to RBAC, subjects play their roles in organizations, which implies that subjects are assigned to roles through a ternary
relation including the organization:

empower(org, s, r): means that the subject s plays the role r in the organization org.

Assignment of actions to activities: As for roles and subjects, activities are an abstraction of various actions authorized
in the system. The relation binding actions to activities is also a ternary relation including the organizations:

consider(org, a, act): means that the action a is considered as an activity act in the organization org.

Assignment of objects to views: As in relational databases, a view in OrBAC corresponds to a set of objects having a
common property. The relation binding the objects to the views to which they belong is also a ternary relation including
the organization:

use(org, o, v): means that the organization org uses the object o in the view v.

Empower

Consider

Use

permission prohibition

Abstract level

Concrete level

(subject, action, object, context)

(org, role, activity, view, context)

Figure 4.3: Abstract and Concrete level of OrBAC

Modeling a security policy with OrBAC

When subjects, actions, and objects are respectively assigned to roles, activities and views, it is now possible to describe
the security policy. It consists of defining different permissions and prohibitions:

• permission(org, r, act, v, c): means that the organization org grants to the role r the permission to carry out
the activity act on the view v in context c.

• prohibition(org, r, act, v, c): means that the organization org prohibits the role r to carry out the activity act
on the view v in the context c.

The concept of context, which did not exist in RBAC, is important in OrBAC, since it makes it possible to express
contextual permissions (or prohibitions). Let us consider the example of a security policy in a medical environment.
If one wants to restrict the access to patients records or files to their attending practitioner, the following permission
should be added to the security policy:

permission(hospital, physician, consult, patient file, attending practitionar)

If there is no context:

permission(hospital, physician, consult, patient file)

A physician could therefore access the file of any patient, which needs to be avoided. To be able to use this concept of
context, a new relation define should be introduced:
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Define(org, s, a, o, c): means that within organization org, the context c is true between subject s, the object o and
action a.

Hierarchy in OrBAC

The OrBAC model makes it possible to define role hierarchies (as in RBAC) but also with respect to the organization
hierarchies. The hierarchies allow the inheritance of the privileges (permissions or prohibitions), if for example r2 is a
sub-role of r1, for an organization org, an activity av and a view v in the context ctx:

permission(org, r1, av, v, ctx) → permission(o, r2, av, v, ctx)

and

prohibition(org, r1, av, v, ctx) → prohibition(org, r2, av, v, ctx)

In the same way for the organizations, if org2 is a sub-organization of org1 then, for a role r an activity av and a view
v in the context ctx:

permission(org1, r, a, v, ctx) → permission(org2, r, av, v, ctx)

and

prohibition(org1, r, a, v, ctx) → prohibition(org2, r, av, v, ctx)

The concept of inheritance is a key concept in OrBAC, since it allows gradual building of the security policy. Indeed, it
is necessary to start by establishing a flow chart of the organizations (and roles) and defining the privileges on the basic
organizations, it will then be enough to add gradually the privileges of the sub-organisations(sub-roles).

4.3 Event B models from OrBAC
A complete introduction of B can be found in [24]. The question is to integrate the event B method and the OrBAC
method; we have shortly introduced the event B concepts and the OrBAC concepts. In a B model, we should define the
mathematical structures on which is based the development and the system under development; this information can be
used to derive further properties that will be used in the validation of models. The B models have a static part and a
dynamic part and in the specification of a security policy in OrBAC one has to state dynamic properties and to check
the consistency of the resulting theory. The MOTOrBAC tool [35] provides a framework for defining a security policy
and for checking the consistency of the set of facts and rules in a PROLOG-like style; this approach is clearly based
on a fixed-point definition of permissions. The question of expressing administration model in OrBAC is also very
crucial and it is very simple to express the administration of security policy in B, since one can model the permissions
as a variable satisfying the security policy expressed in an invariant. These points will be recalled when we present the
effective translation of OrBAC models into event B models.
The current status of the work is as follows:

• We assume to have an OrBAC description of the security policy.

• The security policy is supposed to be stable and consistent; the consistency is checked using tools like, for
instance MOTOrBAC.

• The security policy states permissions and prohibitions.

The problem is to translate OrBAC statements into the event B modelling language.
The translation of the security policy into event B includes several successive stages. A first B model is built and then
other successive refinements are made as shown by figure 4.4. The refinement validates the link between the abstract
level (role, ...) and the concrete level (subject, ....).

4.3.1 Abstract model with permissions and prohibitions
Such as presented in the paragraph 4.2.1, the OrBAC specification has two levels of abstraction (see figure 4.3).
The first step consists in a event B model modelling the abstract part of the security policy, i.e. initially, only concepts
of organization, role, view, activity and context are considered. In the first model permissions and prohibitions of the
OrBAC model should be described.

• The clause SETS in the event B model contains basic sets such as organisations, roles, activities, views and
contexts: ORGS, ROLES, ACTIVITIES, VIEWS, CONTEXTS.
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refinement

refinement
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Translation from

Figure 4.4: Steps of the passage from OrBAC to a B event-based model

• The clauses CONSTANTS et PROPERTIES contain the constants like permission and prohibitions
that will contain privileges of the OrBAC description. One of the most important concepts contained in OrBAC
is the concept of hierarchy whether it is organization hierarchy or role hierarchy. Two new constants sub role
and sub org are introduced to take into account respectively the role and organization hierarchy. It is enough
to specify which roles and which organizations are concerned with inheritances, permissions and prohibitions
corresponding to inheritances are deductively generated.

SETS
ORGS;
ROLES;
ACTIV ITIES;
V IEWS;
CONTEXTS

CONSTANTS
permission,
prohibition,

sub org,
sub role,

default / ∗ default context value ∗ /
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PROPERTIES
permission ⊆ ORGS ×ROLES ×ACTIV ITIES × V IEWS × CONTEXTS
prohibition ⊆ ORGS ×ROLES ×ACTIV ITIES × V IEWS × CONTEXTS

sub org ⊆ ORGS ×ORGS
sub role ⊆ ROLES ×ROLES

default ∈ CONTEXTS

/ ∗ Organization hierarchies ∗ /
∀(org1, org2, r, av, v, ctx).(

(org1 ∈ ORGS ∧ org2 ∈ ORGS∧
r ∈ ROLES ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(org1 7→ org2) ∈ sub org∧
(org2 7→ r 7→ av 7→ v 7→ ctx) ∈ permission)

⇒
(org1 7→ r 7→ av 7→ v 7→ ctx) ∈ permission)

/ ∗ Role hierarchies ∗ /
∀(org, r1, r2, av, v, ctx).(

(r1 ∈ ROLES ∧ r2 ∈ ROLES∧
org ∈ ORGS ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(r1 7→ r2) ∈ sub role∧
(org 7→ r2 7→ av 7→ v 7→ ctx) ∈ permission)

⇒
(org 7→ r1 7→ av 7→ v 7→ ctx) ∈ permission)

/ ∗ Properties for prohibitions ∗ /

To apply the pattern to a given particular case, it is enough to initialize sets in the clause SETS by entities, organizations,
roles, views, activities, contexts. Properties of constants, like permission, interdiction, sub role and sub org,
should also be set in the clause PROPERTIES. Consequently, permissions and prohibitions can not be modified,
since they are defined as constants; the OrBaC definitions are expressing properties satisfied by a consistent theory of
permissions and prohibitions. We will address later the administration of OrBaC.

Introducing state variables

An event B model expresses properties over state and state variables; the main problem is effectively that OrBAC has
no explicit variables. In fact, OrBAC users are using some kind of state modifications but no explicit state exists in
OrBAC, even if contexts might be used to model it. Variables are used to model the status of the system with respect to
permissions and authorizations:

• The clause V ARIABLES contains two variables, the state variable hist abst that contains the history of
system activities; the variable context determines the running context of the system.

Variables satisfy the following properties added to the invariant:

INVARIANT
context ∈ CONTEXTS
hist abst ⊆ ORGS ×ROLES ×ACTIV ITIES × V IEWS × CONTEXTS
hist abst ⊆ permission

The initial values of the two variables are set as follows:

context := default ‖hist abst := ∅ (4.1)

As the security policy is supposed to be consistent, we should be able to prove in the clause ASSERTIONS :

58



ASSERTIONS
pemission ∩ prohibition = ∅
hist abst ∩ prohibition = ∅

• The clause EV ENTS contains the following events :

– The event action models, when an authorization request for the access of a subject to an object of the
system occurs.

– The two events set default and set context value are attached to the change of the system context.

action b=
any org, r, v, av where

org ∈ ORGS
r ∈ ROLES
v ∈ V IEWS
av ∈ ACTIV ITIES
(org 7→ r 7→ av 7→ v 7→ context) ∈ permission

then
hist abst := hist abst ∪ {(org 7→ r 7→ av 7→ v 7→ context)}

end

set context default b=
begin

context := default
end

set context value b=
begin

context :∈ CONTEXTS − {default}
end

The invariant should be preserved and it means that any activity in the system is controled by the security policy through
the variable hist abst.

4.3.2 First refinement: Concrete model with permissions and prohibitions
One of the goals is to use the refinement to validate the relation between security models; OrBaC defines two levels
of abstractions and the current model is refined into a concrete model. The refinement introduces subjects, actions and
objects: sets SUBJECTS, ACTIONS and OBJECTS contain respectively subjects, actions and objects of the
system under development. The clause CONSTANTS includes the following constants:

• empower: assignment of subjects to roles.

• use: assignment of subjects to views.

• consider: assignment of actions to activities.

and properties of constants are stated as follows:

PROPERTIES
empower ⊆ ORGS ×ROLES × SUBJECTS
use ⊆ ORGS × V IEWS ×OBJECTS
consider ⊆ ORGS ×ACTIV ITIES ×ACTIONS

As for the abstract model, to apply the pattern to a given particular case, it is enough to initialize sets in the clause SETS
by entities, subjects, objects and activities. Properties of constants, like empower, use, consider, should also be set
in the clause PROPERTIES.
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Concrete variables

A new variable hist conc models the control of the system according to the security policy; it contains the history of
actions occurences performed by a subject on a given object. The context in which the action occurred is also stored in
this variable.

hist conc ⊆ SUBJECTS ×ACTIONS ×OBJECTS × CONTEXTS

The relation between hist conc and the variable hist abst of the abstract model is expressed in the gluing invariant:
The first part of the invariant states properties satisfied by variables with respect to permissions:

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s 7→ a 7→ o 7→ ctx) ∈ hist conc)∧

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r 7→ s) ∈ empower∧
(v 7→ o) ∈ use∧
(av 7→ a) ∈ consider∧
(org 7→ r 7→ av 7→ v 7→ ctx) ∈ hist abst)))

The invariant states that each action performed by the the system satisfies the security policy.

For the prohibitions, when a subject s wants to carry out an action a on an object o in an organization org, it is necessary
to check it does not exist a prohibition :

prohibition(org, r, act, v, ctx) ∧ empower(org, r, s) ∧ use(org, v, o) ∧ consider(org, act, a)

for any organization org, activity av, view v and ctx as current context.
The second part of the invariant states properties satisfied by variables with respect to prohibitions:

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s 7→ a 7→ o 7→ ctx) ∈ hist conc)∧

⇒
(∀(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r 7→ s) ∈ empower∧
(v 7→ o) ∈ use∧
(av 7→ a) ∈ consider)∧
⇒

(org 7→ r 7→ av 7→ v 7→ ctx) /∈ prohibition)))

The events

The refinement of the event action from the abstract model should take in consideration permissions, prohibitions for
a subject s that ask to perform an action a on an object o.
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action b=
any s, a, o, org, r, v, av where

s ∈ SUBJECTS ∧ a ∈ ACTIONS ∧ o ∈ OBJECTS∧
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r 7→ s) ∈ empower∧
(v 7→ o) ∈ use∧
(av 7→ a) ∈ consider∧

/ ∗ permission ∗ /
(org 7→ r 7→ av 7→ v 7→ ctx) ∈ permission∧

/ ∗ prohibition ∗ /
(∀(orgi, ri, avi, vi).(
(orgi ∈ ORGS ∧ ri ∈ ROLES∧
avi ∈ ACTIV ITIES ∧ vi ∈ V IEWS∧
(ri 7→ s) ∈ empower∧
(vi 7→ o) ∈ use∧
(avi 7→ a) ∈ consider)∧
⇒
((orgi 7→ ri 7→ avi 7→ vi 7→ ctx) /∈ prohibition))

then
hist conc := hist conc ∪ {(s 7→ a 7→ o 7→ context)}

end

Discussion on contextual security policies

In the different cases we studied, It appeared that the context notion has two different aspects. The first aspect concerns
the contexts that are global to the system. An example of this global contexts is a system managing accesses to a
building in a company. We may have a permission (or a prohibition) :

permission(company, agent, access, building, opening hours)

In this permission, the context opening hours is global to the system, i.e. the whole system is, at a given moment, in
the context default or opening hour. A state variable context indicating the running context of the system is used in
this case. On the other hand, in the case, for example, of a system managing the access to the patient files in a hospital,
we may have permissions of the form:

permission(hospital, physician, consult, patient file, attending practitionner)

In this permission, the context attending practitionner (that means that the permission is valid only if the physician
is the attending practitionar of the patient) isn’t global to the system but links subjects to the objects. In this case a new
constant define (as in OrBAC) is used. This constant defines links between objects and subjects, it has the following
form :

define ⊆ ORGS× SUBJECTS× ACTIONS× OBJECTS× CONTEXTS

In order to give the system designer the possibility of expressing contextual permissions of each type, modifications
must be made to the B model. If context value is a value of a global context, invariant should be modified as follows :
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INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s 7→ a 7→ o 7→ ctx) ∈ hist conc)∧

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r 7→ s) ∈ empower∧
(v 7→ o) ∈ use∧
(av 7→ a) ∈ consider∧
(((org 7→ s 7→ a 7→ o 7→ ctx 7→) ∈ define) ∨ (ctx = context value))∧
(org 7→ r 7→ av 7→ v 7→ ctx) ∈ hist abst)))

4.3.3 Second refinement: Adding other constraints not expressed in OrBAC

The state variables of the event B model give additional information on the system which was not available with OrBAC.
It was impossible to know at a given moment the state of the system and, for example, which member of a company
staff consulted or modified which file. This point is important since in practice the security policies are increasingly
complex and new types of constraints appears. The passage towards B allows us to implement the security policy such
as it was established in OrBAC, and enrich it with the possibility of introducing new constraints. We aim to include
constraints in our pattern such as workflow constraints or the duty separation. The pattern user can then choose the
constraints he wants to include in his model depending from the case study.

Workflow constraints

Workflow constraints express properties on the task scheduling in a system. For instance, a rule for a given workflow
states that an action act should be executed, only if a set of actions act1, act2..., actn is already executed (see fig-
ure 4.5). Those constraints can not be expressed in OrBAC, because, when a subject is assigned to a given role, it
obtains its complete privileges. A permission is systematically delivered to execute the action act, if one of the roles
to which a subject is assigned, has the appropriate privilege, even if one of the actions act1, act2,..., actn has not yet
been executed. The implementation of these constraints in a B model leads to the following invariant:

act1

actn

act2

 act
.
.

Figure 4.5: Workflow constraints
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INVARIANT
∀(s, o, ctx).(

(s ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx ∈ CONTEXTS∧
(s 7→ act 7→ o 7→ ctx) ∈ hist conc)∧

⇒
(∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw 7→ act1 7→ o 7→ cw) ∈ hist conc)∧
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw 7→ act2 7→ o 7→ cw) ∈ hist conc)∧
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw 7→ actn 7→ o 7→ cw) ∈ hist conc)))

The refinement provides a way to add such a constraint in model and proof obligations ensure the correctness of the
transformation. Another refinement can be done to introduce specific rules like for instance duty separation.

Duty separation

Duty separation aims to prevent fraud and errors by disseminating action’s execution privileges among different sub-
jects. To implement a system satisfying this type of constraints, it is necessary that when a subject asks for the autho-
rization to execute an action on an object to be able to check, if it did not already act throughout the process, which is
impossible to do with OrBAC in a simple way.
However, there is a form of duty separation known as static duty separation (implemented with RBAC [40]). This one
consists in preventing a subject to cumulate several important functions, it can be achieved when subjects are assigned
to roles. In the B model, the following assertion should be proved to guarantee that no subject cumulates two critical
given roles r1, r2. In the clause ASSERTIONS:

∀ss. ((ss ∈ SUBJECTS ∧ ( org 7→ r1 7→ ss) ∈ empower) ⇒ (org 7→ r2 7→ ss) /∈ empower)

Proceeding this way may be too rigid in some cases. A subject s can cumulate several functions if it does not intervene
many times in the management of the same object o. To prevent that a subject s executes two critical actions act1, act2
on an object o with act1 6= act2, the following invariant has been proved:

INVARIANT
∀(s1, s2, o, ctx1, ctx2).(

(s1 ∈ SUBJECTS ∧ s2 ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx1 ∈ CONTEXTS ∧ ctx2 ∈ CONTEXTS∧
(s1 7→ act1 7→ o 7→ ctx1) ∈ hist conc)∧
(s2 7→ act2 7→ o 7→ ctx2) ∈ hist conc)∧

⇒
(s1 6= s2))

The duty separation and workflow constraints are only particular cases of constraints where instant system state must
be known in order to express them.

4.3.4 Refinement for distributing control
The main idea is to refine the current model with workflow constraints into a model which splits the abstract event
action into two concrete events attached to the control of permissions and prohibitions and the workflow control. The
computation of the guard of the abstract event action is decomposed into the computation of two guards. In further
refinement, the two events will be localized to a given part of the real system.
We want to implement a simplified WfMS (Workflow Management System) [41]. Figure 4.6 shows different compo-
nents of the WfMS. Workflow Database contains workflow steps’ definitions and constraints, it also contains informa-
tions about current workflow progress. Scheduling is performed by the workflow engine which refers to the workflow
database to have information about workflow progress.
There are two events in this refinement:
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Figure 4.6: A simplified WfMS

• Event action aut: that will be executed on the Human Interaction Agent, this event checks only for the permis-
sions and prohibitions.

• Event action: that is the refinement of the event action of the previous model. It checks for the workflow and
duty separation constraints. It will be executed on the workflow engine.

Variables

We keep the variable hist conc, this variable will be implemented in the workflow database. Two new variables
tmp aut and bool workflow are added for the synchronization of the two events action aut and action:

• tmp aut: contains an action that has the necessary privileges to be executed and for which workflow constraints
are not already checked.

• bool workflow: a boolean variable used to synchronize the two events action aut and action.

action aut b=
any s, a, o, org, r, v, av where

s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS∧
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r 7→ s) ∈ empower∧
(v 7→ o) ∈ use∧
(av 7→ a) ∈ consider∧

/ ∗ permission ∗ /
(org 7→ r 7→ av 7→ v 7→ ctx) ∈ permission∧

/ ∗ prohibition ∗ /
(∀(orgi, ri, avi, vi).(
(orgi ∈ ORGS ∧ ri ∈ ROLES∧
avi ∈ ACTIV ITIES ∧ vi ∈ V IEWS∧
(ri 7→ s) ∈ empower∧
(vi 7→ o) ∈ use∧
(avi 7→ a) ∈ consider)∧
⇒
((orgi 7→ ri 7→ avi 7→ vi 7→ ctx) /∈ prohibition))

/ ∗ synchronization ∗ /
bool workflow = FALSE

then
tmp aut := (s 7→ a 7→ o 7→ context)||
bool workflow = TRUE

end
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action b=
any s, a, o, ctx where

s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
tmp aut = (s 7→ a 7→ o 7→ ctx)∧

/ ∗ Workflow constraints ∗ /
(a = act

⇒
(∃(sw, cw).(sw ∈ SUBJECTS∧
cw ∈ CONTEXTS∧
(sw 7→ act1 7→ o 7→ cw) ∈ hist conc)∧
∃(sw, cw).(sw ∈ SUBJECTS∧

cw ∈ CONTEXTS∧
(sw 7→ act2 7→ o 7→ cw) ∈ hist conc)∧

∃(sw, cw).(sw ∈ SUBJECTS∧
cw ∈ CONTEXTS∧
(sw 7→ actn 7→ o 7→ cw) ∈ hist conc)))∧

/ ∗ Duty separation ∗ /
(a = act1

⇒
∀(sp, cp).(
(sp ∈ SUBJECTS ∧ cp ∈ CONTEXTS∧
(sw 7→ act2 7→ o 7→ cp) ∈ hist conc)
⇒

sp 6= s))∧
(a = act2

⇒
∀(sp, cp).(
(sp ∈ SUBJECTS ∧ cp ∈ CONTEXTS∧
(sw 7→ act1 7→ o 7→ cp) ∈ hist conc)
⇒

sp 6= s))∧
/ ∗ synchronization ∗ /

bool workflow = TRUE
then

hist conc := hist conc ∪ {(s 7→ a 7→ o 7→ ctx)}||
bool workflow = FALSE

end

4.4 Conclusion and open issues
The development of software systems satisfying a given security policy should be based on techniques for validating the
link between the security policy and the resulting system. The link between the security policy and the system is called
satisfaction and we have used the event B method, especially the refinement, for relating the security policy expressed
in OrBAC and the final system. Our work is greatly influenced by the case study developed by J.-R. Abrial [2]; he
shows how a system for controling access to buildings, can be derived by refinement and he starts by expressing the
essence of the access control. In our case, we use an elaborate formalism OrBAC for expressing the security policy
and for checking its consistency; we derive a mathematical theory from OrBAC specification and we define an explicit
state of a system which is not explicit in OrBAC. The refinement provides us a way to develop a list of models which
progressively integrate details that seems to be not possible to express in OrBAC: workflow constraints, for instance.
Our models are generic with respect to the security policy and can be reused to develop a real system. We have also
mentionned the fact that one can distribute the control of guard and its evaluation. A crucial question would be to use our
models for developing an infrastructure for controling an existing system with respect to a security policy. Moreover,
security policy is expressing permissions and prohibitions but it remains to consider obligations which are very difficult
to refine because they are close to liveness properties and should be expressed on traces. Finally, case studies should be
developed using this pattern.
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Chapter 5

The cryptographic pattern
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We consider the proof-based development of cryptographic protocols satisfying security properties. The main motiva-
tion is that cryptographic protocols are very complex systems to prove and to design, since they are based on specific
assumptions. For instance, the model of Dolev-Yao provides a way to integrate a description of possible attacks when
designing a protocol. We use existing protocols and want to provide a systematic way to prove but also to design cryp-
tographic protocols; moreover, we would like to provide patterns for integrating cryptographic elements in an existing
protocol. For instance, the MONDEX case study integrates cryptographic elements and we have exprimented the way
to take into account the model of Dolev-Yao. Communication channels are supposed to be unsafe. Analysing cryp-
tographic protocols requires precise modelling of the attacker’s knowledge. In this chapter, we present a pattern for
modelling and proving key establishment protocols. The attacker’s behaviour conforms to the Dolev-Yao model. In
the Dolev-Yao model, the attacker has full control of the communication channel, and the cryptographic primitives are
supposed to be perfect.

5.1 Introduction
To provide a secure communication between two agents over an unsecure communication channel, these agents should
establish a fresh key to use in their subsequent communications. The chosen session key must be known only by the
two agents involved in the communication, it also needs to be a fresh key to avoid using a previously established key
in a previous session. There is several cryptographic protocols dedicated to key establishment that aim to provide such
properties. To be able to prove such properties on a protocol, we must be able to model the knowledge of the attacker.
A pet model of attacker’s behaviour is the Dolev-Yao model [38]; this model is an informal description of all possible
behaviours of the attacker as described in section 5.3.4. In this chapter, we present a pattern to model and prove key
establishment protocols using event B [3, 15, 26] as a modelling language. We give a presentation of the pattern and
an application of the pattern on two protocols: the well known Needham-Schroeder public key protocol [64] and
Blake-Wilson-Menezes key transport protocol [16].
Proving properties on cryptographic protocols such as secrecy is known to be undecidable. However, works involving
formal methods for the analysis of security protocols have been carried out. Theorem provers or model checkers are
usually used for proving properties. For model checking, one famous example is Lowe’s approach [56] using the
process calculus CSP and the model checker FDR. Lowe discovered the famous bug in Needham-Schroeder’s protocol.
Model checking is efficient for discovering an attack if there is one, but it can not guarantee that a protocol is reliable.
We should be carefull on the question of stating properties of a given protocol and it is clear that the modelling language
should be able to state a given property and then to check the property either using model checking or theorem proving.
Other works are based on theorem proving: Paulson [67] used an inductive approach to prove safety properties on
protocols. He defined protocols as sets of traces and used the theorem prover Isabelle [66]. Other approaches, like
Bolignano [17], combines theorem proving and model checking taking general formal method based techniques as
a framework. Let us remember that we focus on a correct-by-construction approach and we are not proposing new
cryptographic protocols.

5.2 Introducing the protocols
Two protocols illustrate the usefullness of our pattern. We have already developed the MONDEX case study [73] and
we have identified a structure for this kind of protocol. Protocols are summarizd by diagrams showing the information
flows and the interactions among agents.

5.2.1 Blake-Wilson-Menezes key transport protocol
This protocol is a key transport protocol. Agent B creates a fresh session key KBA and sends it to the agent A. The
protocol is based in signed messages using public cryptographic keys in order to provide mutual authentication.

5.2.2 Needham-Schroeder public key protocol
This protocol provides mutual authentication using exchanged shared nonces Na ,Nb (see figure 5.2). These nonces
can be used as shared secret for key establishment, this is why the last message that contains Nb remains encrypted
even if it is not necessary for authentication. We consider in this paper the Lowe’s fixed version of the protocol. Lowe
discovered an attack on this protocol using FDR model checker and proposed a variant protocol where the identifier B
was added in the second message of the protocol run.
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Figure 5.1: Blake-Wilson-Menezes key transport protocol.
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Figure 5.2: Needham-Schroeder public key protocol.

Both protocols can be modelled using interaction diagrams. The proposed pattern is based on this observation and on
integration of elements of attack.

5.3 Pattern for modelling the protocols
The pattern is defined by a proof-based development of Event B models which are modelling protocols in a very abstract
and general way. A protocol is a system which is controling the traffic of messages between agents. The three models
defining the development are mentionned in the next figure:

• Abstract model: In this first model, different steps of the the protocol run are modelled using the notion of
abstract transactions. A transaction has different attributes such as it’s source and destination. These attributes
are used to express safety properties we want to prove on our protocol.

• First refinement: In this first refinement, we add the remaining parts of the protocol that were not modelled in
the abstract model. Attacker event keep the invariant preserved.

• Second refinement: In the second refinement, attacker event models the behaviour of a Dolev-Yao style attacker.
The attacker knowledge is modelled and used to prove that the safety properties of the model are maintained
though attacker’s behaviour.

• Third refinement: The last refinement is a data refinement where the abstract transactions are replaced by con-
crete nonces.

We should recall that the goal is to help the developer in discharging proof obligations and the table of proof obligations
for the pattern applied to the two protocols is given by the next table:
Now, we give first a description of the pattern and then we show how it is applied to model both protocols.
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Table 5.1: Proof obligation of the Needham-Schroeder public key protocol

Model Total number of PO Automatics Interactives
Abstract model 60 60 (100%) 0 (0%)
First refinement 71 71 (100%) 0 (0%)

Second refinement 44 32 (73%) 12 (27%)
Total 175 163 (94%) 12 (6%)

Table 5.2: Proof obligation of the Blake-Wilson-Menezes key transport protocol

Model Total number of PO Automatics Interactives
Abstract model 50 50 (100%) 0 (0%)
First refinement 50 50 (100%) 0 (0%)

Second refinement 10 7 (70%) 3 (30%)
Total 110 107 (97%) 3 (3%)

5.3.1 Abstract model
The pattern is based on the notion of abstract transactions. Safety properties will first be expressed over these abstract
transactions. In cryptographic protocols, nonces are used to identify each session or protocol run. Intuitively, each
transaction of the abstract model corresponds to a fresh nonce in the concrete model. A transaction has several attributes
and, before giving these attributes, we need to introduce the basic sets we will use in our model.

SETS
T
Agent
MSG

AXIOMS
axm1 : I ∈ Agent

• T is the set of abstract transactions

• Agent is the set of agents

• MSG is the set of possible messages among agents.

• axm1 : I ∈ Agent expresses the existence of a special agent called the intruder.

Note that for most protocols, even if there is more than one dishonnest agent in the system, it suffices to consider only
one attacker that will combine the abilities and knowledge of all the other dishonnest agents.

Variables

In public key protocols, we often have an agent that initiates the protocol run by sending a message to a given agent and
then waits for the corresponding answer. This answer is usually encrypted with the source agent public key or signed by
the destination agent private key. After receiving this answer, the source agent trusts the authenticity of the destination
agent identity. Our pattern captures this idea thus a transaction has a source (t src) and a destination (t dst). A running
transaction is contained in a set trans . When a transaction terminates it is added to a set end .

INVARIANTS
inv1 : trans ⊆ T
inv2 : end ⊆ trans
inv3 : t src ∈ trans→Agent
inv4 : t dst ∈ trans→Agent

The answer from the destination agent is transmitted via a channel (channel ). A message from this channel has a
source and a destination (msg src, msg dst) but also a variable (msg t) that binds the message to a transaction.
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inv5 : channel ⊆ MSG
inv6 : msg src ∈ channel→Agent
inv7 : msg dst ∈ channel→Agent
inv8 : msg t ∈ channel→ T

To complete the authentication of the destination agent we need an additional variable t bld dst that contains the
believed destination agent by the source agent where the variable t dst contains the real destination agent.

inv9 : t bld dst ∈ trans→Agent

In this case, to prove authentication, we need to prove that both variables are equal when a transaction terminates.

INVARIANTS
inv10 : ∀t·t ∈ end⇒ t dst(t) = t bld dst(t)

Events

The figure 5.3 contains a description of the model events. In the beginning of a transaction, the agent A sets the value
of the variable t bld dst with some agent B and adds the transaction t to the set trans . An agent B answers by sending
a message to A, the variable msg src is set to the value B. Events of the model are enumerated as follows:

• EVENT Init: The transaction source agent initiates the transaction by adding this transaction to the set trans
and sets the values of the variables t src to himself and t bld dst to the agent he wants to communicate with.

• EVENT V: The transaction destination agent answers the source agent by sending a message on the variable
channel and sets the variable msg src to himself for the sent message.

• EVENT End: The transaction source agent receives a message corresponding to this transaction. The variable
t dst is set to the received message source agent contained in the variable msg src.

• EVENT Attk: The attacker sends messages to randomly chosen agents to try to mislead them about his identity.
The variable msg src is set to the attacker’s identity.

t :∈trans

t :∈end

A B

msg

       t_src (t) = A
t_bld_dst (t) = B

Test if 
t_bld_dst (t) = Msg_src(inf)

Msg_src (msg) := B

Msg_src (msg) := I

Figure 5.3: Pattern for modelling public key protocols
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EVENT Init
ANY

t
A
B

WHERE
grd1 : t ∈ T \ trans
grd2 : A ∈ Agent ∧

B ∈ Agent ∧
A 6= B

THEN
act1 : trans := trans ∪ {t}
act2 : t src(t) := A
act3 : t bld dst(t) := B

END

EVENT V
ANY

A
B
t
msg

WHERE
grd1 : A ∈ Agent ∧

B ∈ Agent ∧
A 6= B

grd2 : t ∈ T
grd3 : msg ∈ MSG \ channel

THEN
act1 : channel := channel

∪ {msg}
act2 : msg src(msg) := B
act3 : msg dst(msg) := A
act4 : msg t(msg) := t

END

When an agent A receives a message that corresponds to a transaction, he initiated from an agent B, he sets the variable
t dst to the value B. Thus, the variable t dst contains the real transaction destination. The value of this variable is
not set in the V event, when the agent B sends the message because many agents may answer to agent A’s request
and the real transaction destination is known only once A receives one of the messages. Since a message may contain
additional informations like a shared session key that B may send to A, when A receives the key, t dst will contain the
identity of the transaction key issuer.

Depending of the protocol structure, the agent A should know, if the source of the message he receives is the trusted
destination of the transaction to guarantee the authentication of the protocol. But in this abstract model, we add the
guard 8 that guarantees this property.

EVENT End
ANY

t
A
B
msg

WHERE
grd1 : t ∈ trans \ end
grd2 : A ∈ Agent ∧B ∈ Agent ∧A 6= B
grd3 : t src(t) = A
grd4 : msg ∈ channel
grd5 : msg t(msg) = t
grd6 : msg src(msg) = B
grd7 : msg dst(msg) = A
grd8 : msg src(msg) = t bld dst(t)

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

We also add in this model the attacker event. In this event the attacker can add a message with randomly chosen
attributes to the channel.
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EVENT Attk
ANY

t
A
msg

WHERE
grd1 : t ∈ T
grd2 : A ∈ Agent
grd3 : msg ∈ MSG \ channel
grd4 : A 6= I

THEN
act1 : channel := channel ∪ {msg}
act2 : msg src(msg) := I
act3 : msg dst(msg) := A
act4 : msg t(msg) := t

END

Another event modelling the loss of messages is added. Messages are removed from the channel randomly. This loss
can be caused by a malicious attacker action or by an error in the communication channel.

Invariant

To guarantee authentication, the following invariant was added and proved. It states that for completed transaction, the
trusted destination is the real transaction destinations.

inv11 : ∀t·t ∈ end⇒ t dst(t) = t bld dst(t)

This invariant is easy to prove even for the event Attk, because of the guard 8 of the event End.

5.3.2 Applying the pattern
In the Needham Schroeder public key protocol (see figure 5.2) and the Blake-Wilson-Menezes key transport protocol
(see figure 5.1), the agent A first initiates a transaction and waits for the answer from agent B. The agent B does the
same, and waits for A’s answer. The figure 5.4 shows how the pattern is applied two times to model each protocol.

When the pattern is applied, the corresponding variables, events and invariants are generated. For both protocols, the
following variables are generated : transA, transB , A t src, B t src, A t dst , B t dst , A t bld dst , B t bld dst .
Invariant10 is generated two times :

INVARIANTS
∀t·t ∈ end⇒A t dst(t) = A t bld dst(t)∧
∀t·t ∈ end⇒B t dst(t) = B t bld dst(t)

5.3.3 First refinement
In this refinement, the remaining details of the modelled protocol are added. For instance, in the last step of the Blake-
Wilson-Menezes protocol, agent A sends to agent B a signed message containing A,B ,NB . In this message, B is
contained in the variable msg dst and NB is in the variable msg t , an additional variable is needed for modelling the
attribute A in the message. In the second step of the Needham Schroeder public key protocol, agent B sends to agent
A a message containing (B ,NB ,NA)KA, an additional variable is also needed for modelling the attribute B in the
message. This is done exhaustively with all the modelled protocol steps.
Let MSG VAR the set of additional variables. In the abstract model we use the guard 8 in the EVENT End to prove
authentication, with this guard agent A could know if the message authentic or not. In cryptographic protocols it is
not possible to perform such tests except for the signed messages. Thus for the Blake-Wilson-Menezes protocol, agent
B signs his message with his private key, when agent A receives the message, he can apply B’s public key on the
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tb∈transB

t∈endA

A B

       A_t_src (ta) = A
A_t_bld_dst (ta) = B

t∈endA

t∈endB

ta∈transA

B_t_src (tb) = B
B_t_bld_dst (tb) = A

A_channel_src (msg) = B

B_channel_src(msg) = A

Figure 5.4: Pattern for modelling public key protocols

message and check if the source of the message is really B. Note that this is not true for the Needham Schroeder
public key protocol, since agent B doesn’t sign his message. In this case, the structure of the message itself guarantees
authentication. Accordingly, when messages are not signed, guard 8 in the EVENT End have to be substituted by
a condition over the received message content. This condition is a predicate over the set MSG VAR, we call it
Protocol Cond(MSG VAR, t). The predicate is directly derived from the protocol itself. The EVENT End of
the pattern becomes1:

EVENT End
ANY

t
A
B
msg

WHERE
⊕ grd8 : Protocol Cond(MSG V AR, t)
	 grd8 : msg src(msg) = B

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

To prove that the concrete EVENT End refines the abstract event, the following invariant have to be added:

INVARIANTS
inv12 : ∀t, msg, A, B ·
t ∈ trans ∧A ∈ Agent ∧B ∈ Agent ∧msg ∈ channel ∧
t src(t) = A ∧ t bld dst(t) = B ∧msg t(msg) = t
protocol Cond(MSG V AR, t)
⇒
msg src(msg) = t bld dst(t)

1⊕ and 	 are respectively the added and removed guards compared to the refined event.
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The attacker

The next refinement models attackers’ knowledge and , in this refinement, the EVENT Attk keeps the invariant12 .
To achieve this we call Attk Cond(t) the weakest condition that maintains the invariant12 . Note that this predicate
is obtained automatically from the invariant. We use Attk Cond to refine the event Attk as follows:

EVENT Attk
ANY

t
A
msg

WHERE
⊕ grd7 : Attk Cond(t)

THEN
act1 : ⊕MSG VAR

END

Applying the pattern

To apply the pattern, we first need to define every additional variable. In the Needham Schroeder public key protocol,
agent B answers agent A’s request by resending A’s nonce and his own identity B. Thus, we add the variable msg Agt .

inv13 : msg Agt ∈ channel→Agent

In this protocol, when agent A receives B’s answer, he checks if the identity of the agent in the message he received
(msg Agt), is the same than the identity of the agent, he sends the message to (t bld dst). Thus, in this case, the
predicate Protocol Cond(MSG VAR, t) is:

msg Agt(msg) = t bld dst(t)

This condition is then introduced in the EVENT End and also in the invariant as explained in the pattern. The invariant
becomes:

INVARIANTS
inv14 : ∀t, msg, A, B ·
t ∈ trans ∧A ∈ Agent ∧B ∈ Agent ∧msg ∈ channel ∧
t src(t) = A ∧ t bld dst(t) = B ∧msg t(msg) = t
msg Agt(msg) = t bld dst(t)
⇒
msg src(msg) = t bld dst(t)

In the EVENT Attk, the attacker tries to mislead an agent A claiming himself to be agent B. A is the source of a
transaction t. The attacker adds a new message msg to the channel with msg src(msg) = I and msg Agt(msg) = B .
To keep the invariant, Attk Cond(t) is defined as follows:

t ∈ trans ∧ t src(t) = A ∧ t bld dst(t) = B ⇒ I = B
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5.3.4 Second refinement: attacker’s knowledge
To be able to prove properties such as secrecy and authentication on a protocol, we have to be able to model the
knowledge of the attacker. To model the knowledge of the attacker, it is necessary to know exactly what the attacker
is able to do. One popular model for attacker’s behavior is the Dolev-Yao model. Regardless of the chosen attacker’s
model we will use a variable Mem . This variable is the memory of all agents because the attacker himself may act like
a honest agent. The memory of each agent is a set of transactions.

inv15 : Mem ∈ Agent→ P(T )

We need to answer two issues :

• What is in the variable Mem ?

• How do the intruder uses the knowledge contained in this variable ?

The answer of the second issue is immediate, the event Attk is refined by changing the guard 7. Now the attacker uses
only transaction that are in his memory. The event Attk become:

EVENT Attk
ANY

t
A
msg

WHERE
	 grd7 : t ∈ trans ∧ t src(t) = A ∧ t bld dst(t) = B

⇒ I = B
⊕ grd7 : t ∈ Mem(I)

THEN
act1 : channel := channel ∪ {msg}
act2 : msg src(msg) := I
act3 : msg dst(msg) := A
act4 : msg t(msg) := t

END

And the following invariant is added:

INVARIANTS
inv16 : ∀t.t ∈ Mem(I)⇒Attak Cond(t)

To prove this invariant we need to answer the first issue: what is in the attacker memory ? This will depend from the
chosen attacker model. In the Dolev-Yao one, attacker has full control of communication channel :

• He can intercept and remove any message of the channel.

• He can also generate infinite number of messages.

• He can decrypt parts of the message if he has the appropriate key.

• He can split unencrypted messages.

In our model we have already added event where messages are lost no matters if it is done by the attacker or not. And
we didn’t limit the number of messages the attacker can send. To model the fact that an attacker decrypts parts of the
message, if he has the appropriate key, we add systematically the following substitution, when, in an event, any agent A
sends to another agent B a message where a nonce is encrypted with agent B’s key, in this substitution, the transaction
t is added to agents A and B memory.

Mem := Mem �− {A 7→ Mem(A) ∪ {t}, B 7→ Mem(B) ∪ {t}}

And the following substitution when any agent A sends to another agent B a message, where a nonce is not encrypted:
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Mem := Mem �− {a 7→ b|a ∈ Agent ∧ b = Mem(a) ∪ t}

In the previous substitution, the transaction t is added to each agent’s memory. To prove the invariant invariant12 we
need an additional invariant that gives a characterization of the attacker’s knowledge. This invariant is different from a
protocol to another. In the case of the Needham Schroeder public key protocol where the pattern was applied two times
(see figure 5.4) we had proven that the attackers’s memory contains only transactions that are not in the set trans or
transactions where the attacker is the source or the trusted destination.

INVARIANTS
inv17 : ∀t·t ∈ Mem(I)⇒
(
t /∈ transA ∪ transB ∨
(t ∈ transA ∧ (I = A t bld dst(t) ∨ I = A t src(t))) ∨
(t ∈ transB ∧ (I = B t bld dst(t) ∨ I = B t src(t)))
)

5.3.5 Attacker’s knowledge for proving secrecy
Until now, we used attacker’s knowledge to prove authentication property. We may need to prove secrecy property on
specific parts of the protocol. For example, in the Blake-Wilson-Menezes key transport protocol, we need to prove that
the exchanged key remains a shared secret between the agent B that issued the key and the trusted destination of the
transaction. We introduce a new basic set P KEY and a new variable t key that gives the secret key of each running
transaction. The variable t key is an injective function; two different transactions have different keys associated to
them. This is for proving freshness property over session keys.

SETS
P KEY inv18 : t key ∈ trans � P KEY

We introduce a new variable K Mem . This variable gives for each agent the key he can obtain :

inv19 : K Mem ∈ Agent→ P(P KEY )

As we did for the variable Mem , we add substitutions in all the events where an agent A sends the key to another agent
B. Once again two cases have to be considered, when the key is encrypted or not. Finally we need to add an invariant
that proves that a key is known only by the issuer of the key and the trusted destination. Unlike the invariant17 that
may be different from a protocol to another, this invariant is common to all key transport protocols.

INVARIANTS
inv20 : ∀t, K ·t ∈ trans ∧K = t key(t) ∧K ∈ K Mem(I)⇒

(I = t bld dst(t) ∨ I = t src(t))

The last refinement consists in replacing the abstract transactions by the nonces. This refinement is a simple data
refinement, since for each session of the protocols a fresh nonce is created and a single source and single trusted
destination are assoicated to this nonce. Accordingly, variables t src, t bld dst are replaced by variables nonce src,
nonce bld dst . The invariant invariant12 that states secrecy property for the abstract transactions holds for the nonces
introduced in the last refinement.
We emphasize that in the Needham Schroeder public key protocol since secrecy property for the nonces has been
proven, nonces can be used as shared secrets for key establishment. This is not true for the Blake-Wilson-Menezes key
transport protocol.

5.4 Conclusion
We have introduced an event B based design pattern for key establishment protocols and we have applied it on two
different protocols. Two properties were proved on these protocols, key authentication and key freshness. Less than 5%
of the proofs of the models were interactive. As a perspective of our work, it is necessary to add new properties that are
desired in some situation such as key confirmation where an agent receives an evidence that the other agent involved in
the protocol run received the session key. It is also necessary to address questions on extensions of Dolev-Yao models.
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Conclusion and perspectives

Sommaire
6.1 Summary of the patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 The BART experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

79



6.1 Summary of the patterns
Four patterns have been presented:

• The parametric/generic pattern provides a way to instantiate Event B development and we apply it on two very
different case studies: the design of greedy algorithms [27] and the design of e-voting algorithms [22, 21]. The
technique is very close to the instantiation of discrete models due to Abrial and Hallestede [9] and we had worked
partially with J.-R. Abrial on this technique. The main idea is to solve a general problem and then to understand
that another problem is a specialized problem of the general problem. The refinement plays a central role to
check that the new problem is a special case of the general problem up to instantiation. The implementation of
the pattern is based on the possibility to instnatiate contexts and models.

• The call as event pattern is based on the relation between an event and the call of a procedure; the relation was
first introduced in a paper [28] and has been formalised in [63]. Moreover, a plugin is under development and
will assist the developer when he/she ants to apply it.

• The access control pattern is very close to the parametric/generic pattern but it relates security models and secure
systems. The pattern was developed from case studies of a previous project namely DESIRS, supported by ANR;
the pattern provides a way to separate security policy and secure system using the refinement.

• The cryptographic pattern is probably the most recent pattern; it provides a way to handle attack models like
Dolev-Yao [38] and to take into account attack model when developing cryptographic protocols.

The four patterns have now yet reched the maturity necessary for developing a plugin for each pattern; it remains to
study the possibilities provided by Bart which requires to define a list of rules for helping the developer. When the free
version will be available, we will make experiments.

6.2 The BART experience
The BART (B Automatic Refinement Tool) project aims at developing an automatic refinement tool for B machines.
This tool will allow for a B0 implementation for a machine or a sufficiently detailed B refinement to be automatically
generated. BART operates on the basis of refinement rules. Additional refinement rules may be added in order to allow
for the customization of the refinement of some components. The BART automatic refinement tool has been developed
in the context of the RIMEL project and will be integrated into the next version of Atelier B. Specifications are currently
being finalized.

6.3 Perspectives
In the two first delivrables, we have focused on case studies related to time-sensitive problems and to distributed algo-
rithms; the deliverable 2 [10] introduces patterns for developing models of systems handling time constraints. These
patterns can be added to the four patterns of this report. We have a basis of patterns that we should now try to implement.
However, whereas the implementation seems to be feasible for the call as event pattern, for the parametric/generic pat-
tern and for the access control pattern, the cryptographic pattern requires yet attention. It is also the case for developing
distributed algorithms and further studies and case studies are necessary for delivering additional patterns. The formal-
isation of patterns is also a second possible direction and is clearly related to the implementation. The relationship with
Bart and how Bart can be used for the implementation is another point to address.
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[26] Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts and Case Studies, pages
33–140. Springer, 2007. See [15].
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